The present and future of QCD (2024)

参考文献

[1] 2022 Town Hall meeting on hot and cold QCD. https://indico.mit.edu/event/538/.[2] Aprahamian, Ani, et al. Reaching for the horizon: the 2015 long range plan for nuclear science., 10 2015.[3] Sorensen, Paul, Elliptic Flow: a Study of Space-Momentum Correlations in Relativistic Nuclear Collisions., 2010, 323–374 https://doi.org/10.1142/9789814293297_0006 arXiv:0905.0174.[4] Shen, Chun, Heinz, Ulrich, The road to precision: extraction of the specific shear viscosity of the quark-gluon plasma. Nucl. Phys. News 25:2 (2015), 6–11, 10.1080/10619127.2015.1006502 arXiv:1507.01558.[5] Adam, Jaroslav, et al. Anisotropic flow of charged particles in Pb-Pb collisions at s

NN

=5.02 TeV. Phys. Rev. Lett., 116(13), 2016, 132302, 10.1103/PhysRevLett.116.132302 arXiv:1602.01119.[6] Sirunyan, A.M., et al. Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/ c in PbPb collisions at s

NN

=5.02 TeV. Phys. Lett. B 776 (2018), 195–216, 10.1016/j.physletb.2017.11.041 arXiv:1702.00630.[7] Acharya, S., et al. Anisotropic flow in Xe-Xe collisions at s

NN

=5.44 TeV. Phys. Lett. B 784 (2018), 82–95, 10.1016/j.physletb.2018.06.059 arXiv:1805.01832.[8] Aaboud, Morad, et al. Measurement of the azimuthal anisotropy of charged particles produced in s

NN

= 5.02 TeV Pb+Pb collisions with the ATLAS detector. Eur. Phys. J. C, 78(12), 2018, 997, 10.1140/epjc/s10052-018-6468-7 arXiv:1808.03951.[9] Aidala, C., et al. Creation of quark–gluon plasma droplets with three distinct geometries. Nat. Phys. 15:3 (2019), 214–220, 10.1038/s41567-018-0360-0 arXiv:1805.02973.[10] Sirunyan, Albert M., et al. Charged-particle angular correlations in XeXe collisions at s

NN

= 5.44 TeV. Phys. Rev. C, 100(4), 2019, 044902, 10.1103/PhysRevC.100.044902 arXiv:1901.07997.[11] Aad, Georges, et al. Measurement of the azimuthal anisotropy of charged-particle production in Xe+Xe collisions at s

NN

=5.44 TeV with the ATLAS detector. Phys. Rev. C, 101(2), 2020, 024906, 10.1103/PhysRevC.101.024906 arXiv:1911.04812.[12] Adam, Jaroslav, et al. Azimuthal harmonics in small and large collision systems at RHIC top energies. Phys. Rev. Lett., 122(17), 2019, 172301, 10.1103/PhysRevLett.122.172301 arXiv:1901.08155.[13] Abdallah, Mohamed, et al. Collision-system and beam-energy dependence of anisotropic flow fluctuations. Phys. Rev. Lett., 129(25), 2022, 252301, 10.1103/PhysRevLett.129.252301 arXiv:2201.10365.[14] The ALICE experiment – a journey through QCD. arXiv:2211.04384, 11 2022.[15] Acharya, S., et al. Anisotropic flow of identified particles in Pb-Pb collisions at s

NN

=5.02 TeV. J. High Energy Phys., 09, 2018, 006, 10.1007/JHEP09(2018)006 arXiv:1805.04390.[16] Abdallah, Mohamed, et al. Centrality and transverse momentum dependence of higher-order flow harmonics of identified hadrons in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. C, 105(6), 2022, 064911, 10.1103/PhysRevC.105.064911 arXiv:2203.07204.[17] Strange hadron collectivity in pPb and PbPb collisions. arXiv:2205.00080, 4 2022.[18] Aad, Georges, et al. Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at s

NN

=2.76 TeV with the ATLAS detector. Eur. Phys. J. C, 74(11), 2014, 3157, 10.1140/epjc/s10052-014-3157-z arXiv:1408.4342.[19] Abelev, Betty Bezverkhny, et al. Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C, 90(5), 2014, 054901, 10.1103/PhysRevC.90.054901 arXiv:1406.2474.[20] Chatrchyan, Serguei, et al. Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724 (2013), 213–240, 10.1016/j.physletb.2013.06.028 arXiv:1305.0609.[21] Abdelwahab, N.M., et al. Isolation of flow and nonflow correlations by two- and four-particle cumulant measurements of azimuthal harmonics in s

NN

= 200 GeV Au+Au collisions. Phys. Lett. B 745 (2015), 40–47, 10.1016/j.physletb.2015.04.033 arXiv:1409.2043.[22] Adamczyk, L., et al. Azimuthal anisotropy in U+U and Au+Au collisions at RHIC. Phys. Rev. Lett., 115(22), 2015, 222301, 10.1103/PhysRevLett.115.222301 arXiv:1505.07812.[23] Aaboud, Morad, et al. Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider. Phys. Rev. C, 97(2), 2018, 024904, 10.1103/PhysRevC.97.024904 arXiv:1708.03559.[24] Sirunyan, Albert M., et al. Non-Gaussian elliptic-flow fluctuations in PbPb collisions at s

NN

=5.02 TeV. Phys. Lett. B 789 (2019), 643–665, 10.1016/j.physletb.2018.11.063 arXiv:1711.05594.[25] Acharya, Shreyasi, et al. Investigations of anisotropic flow using multiparticle azimuthal correlations in pp, p-Pb, Xe-Xe, and Pb-Pb collisions at the LHC. Phys. Rev. Lett., 123(14), 2019, 142301, 10.1103/PhysRevLett.123.142301 arXiv:1903.01790.[26] Aaboud, Morad, et al. Fluctuations of anisotropic flow in Pb+Pb collisions at s

NN

= 5.02 TeV with the ATLAS detector. J. High Energy Phys., 01, 2020, 051, 10.1007/JHEP01(2020)051 arXiv:1904.04808.[27] Adam, Jaroslav, et al. Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at s

NN

=2.76 TeV. Phys. Rev. Lett., 117, 2016, 182301, 10.1103/PhysRevLett.117.182301 arXiv:1604.07663.[28] Sirunyan, Albert M., et al. Observation of correlated azimuthal anisotropy Fourier harmonics in pp and p+Pb collisions at the LHC. Phys. Rev. Lett., 120(9), 2018, 092301, 10.1103/PhysRevLett.120.092301 arXiv:1709.09189.[29] Aaboud, Morad, et al. Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector. Phys. Lett. B 789 (2019), 444–471, 10.1016/j.physletb.2018.11.065 arXiv:1807.02012.[30] Sirunyan, Albert M., et al. Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at s

NN

=2.76 and 5.02 TeV. Eur. Phys. J. C, 80(6), 2020, 534, 10.1140/epjc/s10052-020-7834-9 arXiv:1910.08789.[31] Acharya, Shreyasi, et al. Measurements of mixed harmonic cumulants in Pb–Pb collisions at s

NN

= 5.02 TeV. Phys. Lett. B, 818, 2021, 136354, 10.1016/j.physletb.2021.136354 arXiv:2102.12180.[32] Acharya, Shreyasi, et al. Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations. Phys. Lett. B, 834, 2022, 137393, 10.1016/j.physletb.2022.137393 arXiv:2111.06106.[33] Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: a probe of the heavy-ion initial state and nuclear deformation. arXiv:2205.00039, 4 2022.[34] Giacalone, Giuliano, Schenke, Björn, Shen, Chun, Observable signatures of initial state momentum anisotropies in nuclear collisions. Phys. Rev. Lett., 125(19), 2020, 192301, 10.1103/PhysRevLett.125.192301 arXiv:2006.15721.[35] Correlations between multiparticle cumulants and mean transverse momentum in small collision systems with the CMS detector. Technical report, 2022, CERN, Geneva https://cds.cern.ch/record/2805932.[36] Adler, S.S., et al. Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 93, 2004, 152302, 10.1103/PhysRevLett.93.152302 arXiv:nucl-ex/0401003.[37] Adams, J., et al. Pion interferometry in Au+Au collisions at S(NN)**(1/2) = 200-GeV. Phys. Rev. C, 71, 2005, 044906, 10.1103/PhysRevC.71.044906 arXiv:nucl-ex/0411036.[38] Adam, Jaroslav, et al. One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at s

NN

=2.76 TeV. Phys. Rev. C, 92(5), 2015, 054908, 10.1103/PhysRevC.92.054908 arXiv:1506.07884.[39] Sirunyan, Albert M., et al. Bose-Einstein correlations in pp,pPb, and PbPb collisions at s

NN

=0.9−7 TeV. Phys. Rev. C, 97(6), 2018, 064912, 10.1103/PhysRevC.97.064912 arXiv:1712.07198.[40] Aaboud, Morad, et al. Femtoscopy with identified charged pions in proton-lead collisions at s

NN

=5.02 TeV with ATLAS. Phys. Rev. C, 96(6), 2017, 064908, 10.1103/PhysRevC.96.064908 arXiv:1704.01621.[41] K

S

0 and Λ(Λ‾) two-particle femtoscopic correlations in PbPb collisions at s

NN

= 5.02 TeV. arXiv:2301.05290, 1 2023.[42] Aidala, C., et al. Measurements of multiparticle correlations in d+Au collisions at 200, 62.4, 39, and 19.6 GeV and p+Au collisions at 200 GeV and implications for collective behavior. Phys. Rev. Lett., 120(6), 2018, 062302, 10.1103/PhysRevLett.120.062302 arXiv:1707.06108.[43] Schenke, Bjoern, Shen, Chun, Tribedy, Prithwish, Running the gamut of high energy nuclear collisions. Phys. Rev. C, 102(4), 2020, 044905, 10.1103/PhysRevC.102.044905 arXiv:2005.14682.[44] Shen, Chun, Schenke, Björn, Longitudinal dynamics and particle production in relativistic nuclear collisions. Phys. Rev. C, 105(6), 2022, 064905, 10.1103/PhysRevC.105.064905 arXiv:2203.04685.[45] Carzon, Patrick, Martinez, Mauricio, Sievert, Matthew D., Wertepny, Douglas E., Noronha-Hostler, Jacquelyn, Monte Carlo event generator for initial conditions of conserved charges in nuclear geometry. Phys. Rev. C, 105(3), 2022, 034908, 10.1103/PhysRevC.105.034908 arXiv:1911.12454.[46] Schenke, Bjoern, Schlichting, Soeren, 3D glasma initial state for relativistic heavy ion collisions. Phys. Rev. C, 94(4), 2016, 044907, 10.1103/PhysRevC.94.044907 arXiv:1605.07158.[47] Schenke, Bjoern, Schlichting, Soeren, Singh, Pragya, Rapidity dependence of initial state geometry and momentum correlations in p+Pb collisions. Phys. Rev. D, 105(9), 2022, 094023, 10.1103/PhysRevD.105.094023 arXiv:2201.08864.[48] Kurkela, Aleksi, Mazeliauskas, Aleksas, Paquet, Jean-François, Schlichting, Sören, Teaney, Derek, Matching the nonequilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory. Phys. Rev. Lett., 122(12), 2019, 122302, 10.1103/PhysRevLett.122.122302 arXiv:1805.01604.[49] Alqahtani, Mubarak, Nopoush, Mohammad, Strickland, Michael, Relativistic anisotropic hydrodynamics. Prog. Part. Nucl. Phys. 101 (2018), 204–248, 10.1016/j.ppnp.2018.05.004 arXiv:1712.03282.[50] McNelis, M., Bazow, D., Heinz, U., (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state. Phys. Rev. C, 97(5), 2018, 054912, 10.1103/PhysRevC.97.054912 arXiv:1803.01810.[51] Bhadury, Samapan, Florkowski, Wojciech, Jaiswal, Amaresh, Kumar, Avdhesh, Ryblewski, Radoslaw, Dissipative spin dynamics in relativistic matter. Phys. Rev. D, 103(1), 2021, 014030, 10.1103/PhysRevD.103.014030 arXiv:2008.10976.[52] Shi, Shuzhe, Zhang, Hui, Hou, Defu, Liao, Jinfeng, Signatures of chiral magnetic effect in the collisions of isobars. Phys. Rev. Lett., 125, 2020, 242301, 10.1103/PhysRevLett.125.242301 arXiv:1910.14010.[53] Ammon, Martin, Grieninger, Sebastian, Hernandez, Juan, Kaminski, Matthias, Koirala, Roshan, Leiber, Julian, Wu, Jackson, Chiral hydrodynamics in strong external magnetic fields. J. High Energy Phys., 04, 2021, 078, 10.1007/JHEP04(2021)078 arXiv:2012.09183.[54] Parotto, Paolo, Bluhm, Marcus, Mroczek, Debora, Nahrgang, Marlene, Noronha-Hostler, Jacquelyn, Rajagopal, Krishna, Ratti, Claudia, Schäfer, Thomas, Stephanov, Mikhail, QCD equation of state matched to lattice data and exhibiting a critical point singularity. Phys. Rev. C, 101(3), 2020, 034901, 10.1103/PhysRevC.101.034901 arXiv:1805.05249.[55] Monnai, Akihiko, Schenke, Björn, Shen, Chun, Equation of state at finite densities for QCD matter in nuclear collisions. Phys. Rev. C, 100(2), 2019, 024907, 10.1103/PhysRevC.100.024907 arXiv:1902.05095.[56] Noronha-Hostler, J., Parotto, P., Ratti, C., Stafford, J.M., Lattice-based equation of state at finite baryon number, electric charge and strangeness chemical potentials. Phys. Rev. C, 100(6), 2019, 064910, 10.1103/PhysRevC.100.064910 arXiv:1902.06723.[57] Monnai, Akihiko, Schenke, Björn, Shen, Chun, QCD equation of state at finite chemical potentials for relativistic nuclear collisions. Int. J. Mod. Phys. A, 36(07), 2021, 2130007, 10.1142/S0217751X21300076 arXiv:2101.11591.[58] An, Xin, et al. The BEST framework for the search for the QCD critical point and the chiral magnetic effect. Nucl. Phys. A, 1017, 2022, 122343, 10.1016/j.nuclphysa.2021.122343 arXiv:2108.13867.[59] Casalderrey-Solana, Jorge, Liu, Hong, Mateos, David, Rajagopal, Krishna, Wiedemann, Urs Achim, Gauge/String Duality, Hot QCD and Heavy Ion Collisions. 2014, Cambridge University Press, 10.1017/CBO9781139136747 arXiv:1101.0618.[60] Nahrgang, Marlene, Bluhm, Marcus, Schaefer, Thomas, Bass, Steffen A., Diffusive dynamics of critical fluctuations near the QCD critical point. Phys. Rev. D, 99(11), 2019, 116015, 10.1103/PhysRevD.99.116015 arXiv:1804.05728.[61] Nahrgang, Marlene, Bluhm, Marcus, Modeling the diffusive dynamics of critical fluctuations near the QCD critical point. Phys. Rev. D, 102(9), 2020, 094017, 10.1103/PhysRevD.102.094017 arXiv:2007.10371.[62] Akamatsu, Yukinao, Mazeliauskas, Aleksas, Teaney, Derek, A kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion. Phys. Rev. C, 95(1), 2017, 014909, 10.1103/PhysRevC.95.014909 arXiv:1606.07742.[63] Stephanov, M., Yin, Y., Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. D, 98(3), 2018, 036006, 10.1103/PhysRevD.98.036006 arXiv:1712.10305.[64] An, Xin, Basar, Gokce, Stephanov, Mikhail, Yee, Ho-Ung, Relativistic hydrodynamic fluctuations. Phys. Rev. C, 100(2), 2019, 024910, 10.1103/PhysRevC.100.024910 arXiv:1902.09517.[65] Rajagopal, Krishna, Ridgway, Gregory, Weller, Ryan, Yin, Yi, Understanding the out-of-equilibrium dynamics near a critical point in the QCD phase diagram. Phys. Rev. D, 102(9), 2020, 094025, 10.1103/PhysRevD.102.094025 arXiv:1908.08539.[66] An, Xin, Başar, Gökçe, Stephanov, Mikhail, Yee, Ho-Ung, Fluctuation dynamics in a relativistic fluid with a critical point. Phys. Rev. C, 102(3), 2020, 034901, 10.1103/PhysRevC.102.034901 arXiv:1912.13456.[67] An, Xin, Başar, Gökçe, Stephanov, Mikhail, Yee, Ho-Ung, Evolution of non-Gaussian hydrodynamic fluctuations. Phys. Rev. Lett., 127(7), 2021, 072301, 10.1103/PhysRevLett.127.072301 arXiv:2009.10742.[68] Du, Lipei, Heinz, Ulrich, Rajagopal, Krishna, Yin, Yi, Fluctuation dynamics near the QCD critical point. Phys. Rev. C, 102(5), 2020, 054911, 10.1103/PhysRevC.102.054911 arXiv:2004.02719.[69] De, Aritra, Shen, Chun, Kapusta, Joseph I., Stochastic hydrodynamics and hydro-kinetics: similarities and differences. Phys. Rev. C, 106(5), 2022, 054903, 10.1103/PhysRevC.106.054903 arXiv:2203.02134.[70] Oliinychenko, Dmytro, Koch, Volker, Microcanonical particlization with local conservation laws. Phys. Rev. Lett., 123(18), 2019, 182302, 10.1103/PhysRevLett.123.182302 arXiv:1902.09775.[71] Pradeep, Maneesha, Rajagopal, Krishna, Stephanov, Mikhail, Yin, Yi, Freezing out fluctuations in Hydro+ near the QCD critical point. Phys. Rev. D, 106(3), 2022, 036017, 10.1103/PhysRevD.106.036017 arXiv:2204.00639.[72] Kanakubo, Yuuka, Tachibana, Yasuki, Hirano, Tetsufumi, Interplay between core and corona components in high-energy nuclear collisions. Phys. Rev. C, 105(2), 2022, 024905, 10.1103/PhysRevC.105.024905 arXiv:2108.07943.[73] Danielewicz, Pawel, Lacey, Roy, Lynch, William G., Determination of the equation of state of dense matter. Science 298 (2002), 1592–1596, 10.1126/science.1078070 arXiv:nucl-th/0208016.[74] Le Fèvre, A., Leifels, Y., Reisdorf, W., Aichelin, J., Hartnack, Ch., Constraining the nuclear matter equation of state around twice saturation density. Nucl. Phys. A 945 (2016), 112–133, 10.1016/j.nuclphysa.2015.09.015 arXiv:1501.05246.[75] Oliinychenko, Dmytro, Sorensen, Agnieszka, Koch, Volker, McLerran, Larry, Sensitivity of Au+Au collisions to the symmetric nuclear matter equation of state at 2–5 nuclear saturation densities. arXiv:2208.11996, 8 2022.[76] Steinheimer, Jan, Motornenko, Anton, Sorensen, Agnieszka, Nara, Yasushi, Koch, Volker, Bleicher, Marcus, The high-density equation of state in heavy-ion collisions: constraints from proton flow. Eur. Phys. J. C, 82(10), 2022, 911, 10.1140/epjc/s10052-022-10894-w arXiv:2208.12091.[77] Colonna, Maria, Collision dynamics at medium and relativistic energies. https://doi.org/10.1016/j.ppnp.2020.103775 arXiv:2003.02500, 3 2020.[78] Fuchs, C., Faessler, Amand, Zabrodin, E., Zheng, Yu-Ming, Probing the nuclear equation of state by K+ production in heavy ion collisions. Phys. Rev. Lett. 86 (2001), 1974–1977, 10.1103/PhysRevLett.86.1974 arXiv:nucl-th/0011102.[79] Li, Bao-An, Probing the high density behavior of nuclear symmetry energy with high-energy heavy ion collisions. Phys. Rev. Lett., 88, 2002, 192701, 10.1103/PhysRevLett.88.192701 arXiv:nucl-th/0205002.[80] Xiao, Zhigang, Li, Bao-An, Chen, Lie-Wen, Yong, Gao-Chan, Zhang, Ming, Circ*mstantial evidence for a soft nuclear symmetry energy at suprasaturation densities. Phys. Rev. Lett., 102, 2009, 062502, 10.1103/PhysRevLett.102.062502 arXiv:0808.0186.[81] Yong, Gao-Chan, Li, Bao-An, Xiao, Zhi-Gang, Lin, Zi-Wei, Probing the high-density nuclear symmetry energy with the Ξ−/Ξ0 ratio in heavy-ion collisions at sNN≈3 GeV. Phys. Rev. C, 106(2), 2022, 024902, 10.1103/PhysRevC.106.024902 arXiv:2206.10766.[82] Estee, J., et al. Probing the symmetry energy with the spectral pion ratio. Phys. Rev. Lett., 126(16), 2021, 162701, 10.1103/PhysRevLett.126.162701 arXiv:2103.06861.[83] Li, Bao-An, Neutron proton differential flow as a probe of isospin dependence of nuclear equation of state. Phys. Rev. Lett. 85 (2000), 4221–4224, 10.1103/PhysRevLett.85.4221 arXiv:nucl-th/0009069.[84] Li, Bao-An, Ramos, Angels, Verde, Giuseppe, Vidana, Isaac, Topical issue on nuclear symmetry energy. Eur. Phys. J. A, 50(9), 2014, 10.1140/epja/i2014-14009-x.[85] Xu, Jun, Transport approaches for the description of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys. 106 (2019), 312–359, 10.1016/j.ppnp.2019.02.009 arXiv:1904.00131.[86] Russotto, P., et al. Symmetry energy from elliptic flow in 197Au +197Au. Phys. Lett. B 697 (2011), 471–476, 10.1016/j.physletb.2011.02.033 arXiv:1101.2361.[87] Cozma, M.D., Neutron-proton elliptic flow difference as a probe for the high density dependence of the symmetry energy. Phys. Lett. B 700 (2011), 139–144, 10.1016/j.physletb.2011.05.002 arXiv:1102.2728.[88] Giordano, V., Colonna, M., Di Toro, M., Greco, V., Rizzo, J., Isospin emission and flows at high baryon density: a test of the symmetry potential. Phys. Rev. C, 81, 2010, 044611, 10.1103/PhysRevC.81.044611 arXiv:1001.4961.[89] Liu, He, Wang, Feng-Tao, Sun, Kai-Jia, Xu, Jun, Ko, Che Ming, Isospin splitting of pion elliptic flow in relativistic heavy-ion collisions. Phys. Lett. B, 798, 2019, 135002, 10.1016/j.physletb.2019.135002 arXiv:1908.01156.[90] Li, Guo-Qiang, Ko, C.M., Lambda flow in heavy ion collisions: the role of final state interactions. Phys. Rev. C 54 (1996), 1897–1902, 10.1103/PhysRevC.54.1897 arXiv:nucl-th/9608049.[91] Wang, Z.S., Faessler, Amand, Fuchs, C., Waindzoch, T., Lambda collective flow in heavy ion reactions. Nucl. Phys. A 645 (1999), 177–188, 10.1016/S0375-9474(98)00605-8 Nucl. Phys. A, 648, 1999, 281 (Erratum) arXiv:nucl-th/9811090.[92] Ko, Che Ming, Medium effects on the flow of strange particles in heavy ion collisions. J. Phys. G 27 (2001), 327–336, 10.1088/0954-3899/27/3/310 arXiv:nucl-th/0009040.[93] Sorensen, Agnieszka, Koch, Volker, Phase transitions and critical behavior in hadronic transport with a relativistic density functional equation of state. Phys. Rev. C, 104(3), 2021, 034904, 10.1103/PhysRevC.104.034904 arXiv:2011.06635.[94] Everett, D., et al. Phenomenological constraints on the transport properties of QCD matter with data-driven model averaging. Phys. Rev. Lett., 126(24), 2021, 242301, 10.1103/PhysRevLett.126.242301 arXiv:2010.03928.[95] Petersen, Hannah, Coleman-Smith, Christopher, Bass, Steffen A., Wolpert, Robert, Constraining the initial state granularity with bulk observables in Au+Au collisions at s

NN

=200 GeV. J. Phys. G, 38, 2011, 045102, 10.1088/0954-3899/38/4/045102 arXiv:1012.4629.[96] Novak, John, Novak, Kevin, Pratt, Scott, Vredevoogd, Joshua, Coleman-Smith, Chris, Wolpert, Robert, Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions. Phys. Rev. C, 89(3), 2014, 034917, 10.1103/PhysRevC.89.034917 arXiv:1303.5769.[97] Sangaline, Evan, Pratt, Scott, Toward a deeper understanding of how experiments constrain the underlying physics of heavy-ion collisions. Phys. Rev. C, 93(2), 2016, 024908, 10.1103/PhysRevC.93.024908 arXiv:1508.07017.[98] Bernhard, Jonah E., Marcy, Peter W., Coleman-Smith, Christopher E., Huzurbazar, Snehalata, Wolpert, Robert L., Bass, Steffen A., Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison. Phys. Rev. C, 91(5), 2015, 054910, 10.1103/PhysRevC.91.054910 arXiv:1502.00339.[99] Bernhard, Jonah E., Moreland, J. Scott, Bass, Steffen A., Liu, Jia, Heinz, Ulrich, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. Phys. Rev. C, 94(2), 2016, 024907, 10.1103/PhysRevC.94.024907 arXiv:1605.03954.[100] Moreland, J. Scott, Bernhard, Jonah E., Bass, Steffen A., Bayesian calibration of a hybrid nuclear collision model using p-Pb and Pb-Pb data at energies available at the CERN Large Hadron Collider. Phys. Rev. C, 101(2), 2020, 024911, 10.1103/PhysRevC.101.024911 arXiv:1808.02106.[101] Bernhard, Jonah E., Moreland, J. Scott, Bass, Steffen A., Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nat. Phys. 15:11 (2019), 1113–1117, 10.1038/s41567-019-0611-8.[102] Everett, D., et al. Multisystem Bayesian constraints on the transport coefficients of QCD matter. Phys. Rev. C, 103(5), 2021, 054904, 10.1103/PhysRevC.103.054904 arXiv:2011.01430.[103] Nijs, Govert, van der Schee, Wilke, Gürsoy, Umut, Snellings, Raimond, Transverse momentum differential global analysis of heavy-ion collisions. Phys. Rev. Lett., 126(20), 2021, 202301, 10.1103/PhysRevLett.126.202301 arXiv:2010.15130.[104] Nijs, Govert, van der Schee, Wilke, Gürsoy, Umut, Snellings, Raimond, Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum. Phys. Rev. C, 103(5), 2021, 054909, 10.1103/PhysRevC.103.054909 arXiv:2010.15134.[105] Nijs, Govert, van der Schee, Wilke, Predictions and postdictions for relativistic lead and oxygen collisions with the computational simulation code Trajectum. Phys. Rev. C, 106(4), 2022, 044903, 10.1103/PhysRevC.106.044903 arXiv:2110.13153.[106] Parkkila, J.E., Onnerstad, A., Kim, D.J., Bayesian estimation of the specific shear and bulk viscosity of the quark-gluon plasma with additional flow harmonic observables. Phys. Rev. C, 104(5), 2021, 054904, 10.1103/PhysRevC.104.054904 arXiv:2106.05019.[107] Paquet, Jean-François, et al. Revisiting Bayesian constraints on the transport coefficients of QCD. Nucl. Phys. A, 1005, 2021, 121749, 10.1016/j.nuclphysa.2020.121749 arXiv:2002.05337.[108] Xie, Man, Ke, Weiyao, Zhang, Hanzhong, Wang, Xin-Nian, Information field based global Bayesian inference of the jet transport coefficient. arXiv:2206.01340, 6 2022.[109] Xie, Man, Ke, Weiyao, Zhang, Hanzhong, Wang, Xin-Nian, Global constraint on the jet transport coefficient from single hadron, dihadron and γ-hadron spectra in high-energy heavy-ion collisions. arXiv:2208.14419, 8 2022.[110] Soltz, R.A., A comprehensive Monte Carlo framework for jet-quenching. Nucl. Phys. A, 1005, 2021, 122040, 10.1016/j.nuclphysa.2020.122040 arXiv:2003.11728.[111] Cao, S., et al. Determining the jet transport coefficient qˆ from inclusive hadron suppression measurements using Bayesian parameter estimation. Phys. Rev. C, 104(2), 2021, 024905, 10.1103/PhysRevC.104.024905 arXiv:2102.11337.[112] Bernhard, Jonah E., Bayesian parameter estimation for relativistic heavy-ion collisions. PhD thesis, 4 2018, Duke U. arXiv:1804.06469.[113] Geurts, Frank, Tripolt, Ralf-Arno, Electromagnetic probes: theory and experiment. Prog. Part. Nucl. Phys., 128, 2023, 104004, 10.1016/j.ppnp.2022.104004 arXiv:2210.01622.[114] Adamczyk, L., et al. Direct virtual photon production in Au+Au collisions at s

NN

= 200 GeV. Phys. Lett. B 770 (2017), 451–458, 10.1016/j.physletb.2017.04.050 arXiv:1607.01447.[115] Adare, A., et al. Beam energy and centrality dependence of direct-photon emission from ultrarelativistic heavy-ion collisions. Phys. Rev. Lett., 123(2), 2019, 022301, 10.1103/PhysRevLett.123.022301 arXiv:1805.04084.[116] Acharya, U.A., et al. Low-p

T

direct-photon production in Au+Au collisions at s

NN

=39 and 62.4 GeV. arXiv:2203.12354, 3 2022.[117] Acharya, U.A., et al. Nonprompt direct-photon production in Au+Au collisions at s

NN

=200 GeV. arXiv:2203.17187, 3 2022.[118] Adam, Jaroslav, et al. Direct photon production in Pb-Pb collisions at s

NN

= 2.76 TeV. Phys. Lett. B 754 (2016), 235–248, 10.1016/j.physletb.2016.01.020 arXiv:1509.07324.[119] Acharya, Shreyasi, et al. Direct photon elliptic flow in Pb-Pb collisions at s

NN

= 2.76 TeV. Phys. Lett. B 789 (2019), 308–322, 10.1016/j.physletb.2018.11.039 arXiv:1805.04403.[120] Adare, A., et al. Azimuthally anisotropic emission of low-momentum direct photons in Au+Au collisions at s

NN

=200 GeV. Phys. Rev. C, 94(6), 2016, 064901, 10.1103/PhysRevC.94.064901 arXiv:1509.07758.[121] Gale, Charles, Paquet, Jean-François, Schenke, Björn, Shen, Chun, Multimessenger heavy-ion collision physics. Phys. Rev. C, 105(1), 2022, 014909, 10.1103/PhysRevC.105.014909 arXiv:2106.11216.[122] Acharya, Shreyasi, et al. Measurement of dielectron production in central Pb-Pb collisions at s

NN

= 2.76 TeV. Phys. Rev. C, 99(2), 2019, 024002, 10.1103/PhysRevC.99.024002 arXiv:1807.00923.[123] Adamczyk, L., et al. Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at s

NN

= 19.6 and 200 GeV. Phys. Lett. B 750 (2015), 64–71, 10.1016/j.physletb.2015.08.044 arXiv:1501.05341.[124] Adamczyk, L., et al. Measurements of dielectron production in Au+Au collisions at s

NN

= 200 GeV from the STAR experiment. Phys. Rev. C, 92(2), 2015, 024912, 10.1103/PhysRevC.92.024912 arXiv:1504.01317.[125] Adam, Jaroslav, et al. Measurements of dielectron production in Au+Au collisions at s

NN

= 27, 39, and 62.4 GeV from the STAR experiment. arXiv:1810.10159, 10 2018.[126] Adam, Jaroslav, et al. Low-p

T

e+e pair production in Au+Au collisions at s

NN

= 200 GeV and U+U collisions at s

NN

= 193 GeV at STAR. Phys. Rev. Lett., 121(13), 2018, 132301, 10.1103/PhysRevLett.121.132301 arXiv:1806.02295.[127] Rapp, Ralf, van Hees, Hendrik, Thermal dileptons as fireball thermometer and chronometer. Phys. Lett. B 753 (2016), 586–590, 10.1016/j.physletb.2015.12.065 arXiv:1411.4612.[128] Paquet, Jean-François, Shen, Chun, Denicol, Gabriel S., Luzum, Matthew, Schenke, Björn, Jeon, Sangyong, Gale, Charles, Production of photons in relativistic heavy-ion collisions. Phys. Rev. C, 93(4), 2016, 044906, 10.1103/PhysRevC.93.044906 arXiv:1509.06738.[129] Kim, Young-Min, Lee, Chang-Hwan, Teaney, Derek, Zahed, Ismail, Direct photon elliptic flow at energies available at the BNL relativistic heavy ion collider and the CERN Large Hadron Collider. Phys. Rev. C, 96(1), 2017, 015201, 10.1103/PhysRevC.96.015201 arXiv:1610.06213.[130] Dasgupta, Pingal, De, Somnath, Chatterjee, Rupa, Srivastava, Dinesh K., Photon production from Pb+Pb collisions at s

NN

= 5.02 TeV at LHC and at s

NN

= 39 TeV at FCC. Phys. Rev. C, 98(2), 2018, 024911, 10.1103/PhysRevC.98.024911 arXiv:1804.02828.[131] Garcia-Montero, Oscar, Löher, Nicole, Mazeliauskas, Aleksas, Berges, Jürgen, Reygers, Klaus, Probing the evolution of heavy-ion collisions using direct photon interferometry. Phys. Rev. C, 102(2), 2020, 024915, 10.1103/PhysRevC.102.024915 arXiv:1909.12246.[132] Monnai, Akihiko, Direct photons in hydrodynamic modeling of relativistic nuclear collisions. Int. J. Mod. Phys. A, 37(11n12), 2022, 2230006, 10.1142/S0217751X2230006X arXiv:2203.13208.[133] Chatterjee, Rupa, Dasgupta, Pingal, Srivastava, Dinesh K., Anisotropic flow of thermal photons at energies available at the BNL relativistic heavy ion collider and at the CERN Large Hadron Collider. Phys. Rev. C, 96(1), 2017, 014911, 10.1103/PhysRevC.96.014911 arXiv:1702.02378.[134] Shen, Chun, Heinz, Ulrich W., Paquet, Jean-Francois, Gale, Charles, Thermal photons as a quark-gluon plasma thermometer reexamined. Phys. Rev. C, 89(4), 2014, 044910, 10.1103/PhysRevC.89.044910 arXiv:1308.2440.[135] Shen, Chun, Heinz, Ulrich W., Paquet, Jean-Francois, Kozlov, Igor, Gale, Charles, Anisotropic flow of thermal photons as a quark-gluon plasma viscometer. Phys. Rev. C, 91(2), 2015, 024908, 10.1103/PhysRevC.91.024908 arXiv:1308.2111.[136] Vujanovic, Gojko, Denicol, Gabriel S., Luzum, Matthew, Jeon, Sangyong, Gale, Charles, Investigating the temperature dependence of the specific shear viscosity of QCD matter with dilepton radiation. Phys. Rev. C, 98(1), 2018, 014902, 10.1103/PhysRevC.98.014902 arXiv:1702.02941.[137] Vujanovic, Gojko, Paquet, Jean-François, Shen, Chun, Denicol, Gabriel S., Jeon, Sangyong, Gale, Charles, Heinz, Ulrich, Exploring the influence of bulk viscosity of QCD on dilepton tomography. Phys. Rev. C, 101, 2020, 044904, 10.1103/PhysRevC.101.044904 arXiv:1903.05078.[138] Vujanovic, Gojko, Paquet, Jean-François, Denicol, Gabriel S., Luzum, Matthew, Jeon, Sangyong, Gale, Charles, Electromagnetic radiation as a probe of the initial state and of viscous dynamics in relativistic nuclear collisions. Phys. Rev. C, 94(1), 2016, 014904, 10.1103/PhysRevC.94.014904 arXiv:1602.01455.[139] Liu, Yizhuang, Zahed, Ismail, Viscous corrections to electromagnetic emissivities in QCD. Phys. Rev. D, 96(11), 2017, 116021, 10.1103/PhysRevD.96.116021 arXiv:1707.08523.[140] Hauksson, Sigtryggur, Jeon, Sangyong, Gale, Charles, Photon emission from quark-gluon plasma out of equilibrium. Phys. Rev. C, 97(1), 2018, 014901, 10.1103/PhysRevC.97.014901 arXiv:1709.03598.[141] Schäfer, Anna, Garcia-Montero, Oscar, Paquet, Jean-François, Elfner, Hannah, Gale, Charles, Out-of-equilibrium photon production in the late stages of relativistic heavy-ion collisions. Phys. Rev. C, 105(4), 2022, 044910, 10.1103/PhysRevC.105.044910 arXiv:2111.13603.[142] Schäfer, Anna, Torres-Rincon, Juan M., Rothermel, Jonas, Ehlert, Niklas, Gale, Charles, Elfner, Hannah, Benchmarking a nonequilibrium approach to photon emission in relativistic heavy-ion collisions. Phys. Rev. D, 99(11), 2019, 114021, 10.1103/PhysRevD.99.114021 arXiv:1902.07564.[143] Holt, Nathan P.M., Hohler, Paul M., Rapp, Ralf, Thermal photon emission from the πρω system. Nucl. Phys. A 945 (2016), 1–20, 10.1016/j.nuclphysa.2015.09.008 arXiv:1506.09205.[144] Holt, Nathan P.M., Rapp, Ralf, Baryonic sources of thermal photons. Eur. Phys. J. A, 56(11), 2020, 292, 10.1140/epja/s10050-020-00301-x arXiv:2008.00116.[145] Hidaka, Yoshimasa, Lin, Shu, Pisarski, Robert D., Satow, Daisuke, Dilepton and photon production in the presence of a nontrivial Polyakov loop. J. High Energy Phys., 10, 2015, 005, 10.1007/JHEP10(2015)005 arXiv:1504.01770.[146] Zakharov, B.G., Phenomenology of collinear photon emission from quark–gluon plasma in AA collisions. JETP Lett. 106:5 (2017), 283–289, 10.1134/S0021364017170027 arXiv:1707.08602.[147] Bandyopadhyay, Aritra, Haque, Najmul, Mustafa, Munshi G., Strickland, Michael, Dilepton rate and quark number susceptibility with the Gribov action. Phys. Rev. D, 93(6), 2016, 065004, 10.1103/PhysRevD.93.065004 arXiv:1508.06249.[148] Iatrakis, Ioannis, Kiritsis, Elias, Shen, Chun, Yang, Di-Lun, Holographic photon production in heavy ion collisions. J. High Energy Phys., 04, 2017, 035, 10.1007/JHEP04(2017)035 arXiv:1609.07208.[149] Ding, Heng-Tong, Kaczmarek, Olaf, Meyer, Florian, Thermal dilepton rates and electrical conductivity of the QGP from the lattice. Phys. Rev. D, 94(3), 2016, 034504, 10.1103/PhysRevD.94.034504 arXiv:1604.06712.[150] Ghiglieri, J., Kaczmarek, O., Laine, M., Meyer, F., Lattice constraints on the thermal photon rate. Phys. Rev. D, 94(1), 2016, 016005, 10.1103/PhysRevD.94.016005 arXiv:1604.07544.[151] Jackson, G., Laine, M., Testing thermal photon and dilepton rates. J. High Energy Phys., 11, 2019, 144, 10.1007/JHEP11(2019)144 arXiv:1910.09567.[152] Cè, Marco, Harris, Tim, Meyer, Harvey B., Steinberg, Aman, Toniato, Arianna, Rate of photon production in the quark-gluon plasma from lattice QCD. Phys. Rev. D, 102(9), 2020, 091501, 10.1103/PhysRevD.102.091501 arXiv:2001.03368.[153] Cè, Marco, Harris, Tim, Krasniqi, Ardit, Meyer, Harvey B., Török, Csaba, Photon emissivity of the quark-gluon plasma: a lattice QCD analysis of the transverse channel. Phys. Rev. D, 106(5), 2022, 054501, 10.1103/PhysRevD.106.054501 arXiv:2205.02821.[154] Bhattacharya, Lusaka, Ryblewski, Radoslaw, Strickland, Michael, Photon production from a nonequilibrium quark-gluon plasma. Phys. Rev. D, 93(6), 2016, 065005, 10.1103/PhysRevD.93.065005 arXiv:1507.06605.[155] Kasmaei, Babak S., Strickland, Michael, Dilepton production and elliptic flow from an anisotropic quark-gluon plasma. Phys. Rev. D, 99(3), 2019, 034015, 10.1103/PhysRevD.99.034015 arXiv:1811.07486.[156] Kasmaei, Babak Salehi, Strickland, Michael, Photon production and elliptic flow from a momentum-anisotropic quark-gluon plasma. Phys. Rev. D, 102(1), 2020, 014037, 10.1103/PhysRevD.102.014037 arXiv:1911.03370.[157] Fujii, Hirotsugu, Itakura, Kazunori, Miyachi, Katsunori, Nonaka, Chiho, Radiative hadronization: photon emission at hadronization from quark-gluon plasma. Phys. Rev. C, 106(3), 2022, 034906, 10.1103/PhysRevC.106.034906 arXiv:2204.03116.[158] Tuchin, Kirill, Photon radiation in hot nuclear matter by means of chiral anomalies. Phys. Rev. C, 99(6), 2019, 064907, 10.1103/PhysRevC.99.064907 arXiv:1903.02629.[159] Ayala, Alejandro, Castano-Yepes, Jorge David, Dominguez, Cesareo A., Hernandez, Luis A., Hernandez-Ortiz, Saul, Tejeda-Yeomans, Maria Elena, Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions. Phys. Rev. D, 96(1), 2017, 014023, 10.1103/PhysRevD.96.014023 Phys. Rev. D, 96, 2017, 119901 (Erratum) arXiv:1704.02433.[160] Linnyk, O., Konchakovski, V., Steinert, T., Cassing, W., Bratkovskaya, E.L., Hadronic and partonic sources of direct photons in relativistic heavy-ion collisions. Phys. Rev. C, 92(5), 2015, 054914, 10.1103/PhysRevC.92.054914 arXiv:1504.05699.[161] Arnaldi, R., et al. NA60 results on thermal dimuons. Eur. Phys. J. C 61 (2009), 711–720, 10.1140/epjc/s10052-009-0878-5 arXiv:0812.3053.[162] Geurts, Frank, The STAR dilepton physics program. Nucl. Phys. A 904-905 (2013), 217c–224c, 10.1016/j.nuclphysa.2013.01.062 arXiv:1210.5549.[163] Hohler, Paul M., Rapp, Ralf, Is ρ-meson melting compatible with chiral restoration?. Phys. Lett. B 731 (2014), 103–109, 10.1016/j.physletb.2014.02.021 arXiv:1311.2921.[164] Khachatryan, Vardan, et al. Measurement of the double-differential inclusive jet cross section in proton–proton collisions at s=13TeV. Eur. Phys. J. C, 76(8), 2016, 451, 10.1140/epjc/s10052-016-4286-3 arXiv:1605.04436.[165] Aaboud, M., et al. Measurement of inclusive jet and dijet cross-sections in proton-proton collisions at s=13 TeV with the ATLAS detector. J. High Energy Phys., 05, 2018, 195, 10.1007/JHEP05(2018)195 arXiv:1711.02692.[166] Adcox, K., et al. Suppression of hadrons with large transverse momentum in central Au+Au collisions at s

NN

= 130-GeV. Phys. Rev. Lett., 88, 2002, 022301, 10.1103/PhysRevLett.88.022301 arXiv:nucl-ex/0109003.[167] Adler, C., et al. Disappearance of back-to-back high p

T

hadron correlations in central Au+Au collisions at s

NN

= 200-GeV. Phys. Rev. Lett., 90, 2003, 082302, 10.1103/PhysRevLett.90.082302 arXiv:nucl-ex/0210033.[168] Aad, Georges, et al. Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at s

NN

=2.77 TeV with the ATLAS detector at the LHC. Phys. Rev. Lett., 105, 2010, 252303, 10.1103/PhysRevLett.105.252303 arXiv:1011.6182.[169] Chatrchyan, Serguei, et al. Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV. Phys. Rev. C, 84, 2011, 024906, 10.1103/PhysRevC.84.024906 arXiv:1102.1957.[170] Khachatryan, Vardan, et al. Measurement of inclusive jet cross sections in pp and PbPb collisions at s

NN

= 2.76 TeV. Phys. Rev. C, 96(1), 2017, 015202, 10.1103/PhysRevC.96.015202 arXiv:1609.05383.[171] Chatrchyan, Serguei, et al. Measurement of jet fragmentation in PbPb and pp collisions at s

NN

=2.76 TeV. Phys. Rev. C, 90(2), 2014, 024908, 10.1103/PhysRevC.90.024908 arXiv:1406.0932.[172] Aad, Georges, et al. Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at s

NN

=2.76 TeV with the ATLAS detector. Phys. Lett. B 739 (2014), 320–342, 10.1016/j.physletb.2014.10.065 arXiv:1406.2979.[173] Aaboud, Morad, et al. Measurement of jet fragmentation in Pb+Pb and pp collisions at s

NN

=5.02 TeV with the ATLAS detector. Phys. Rev. C, 98(2), 2018, 024908, 10.1103/PhysRevC.98.024908 arXiv:1805.05424.[174] Sirunyan, Albert M., et al. Measurement of the groomed jet mass in PbPb and pp collisions at s

NN

=5.02 TeV. J. High Energy Phys., 10, 2018, 161, 10.1007/JHEP10(2018)161 arXiv:1805.05145.[175] Sirunyan, Albert M., et al. Measurement of the splitting function in pp and Pb-Pb collisions at s

NN

= 5.02 TeV. Phys. Rev. Lett., 120(14), 2018, 142302, 10.1103/PhysRevLett.120.142302 arXiv:1708.09429.[176] Acharya, Shreyasi, et al. Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb−Pb collisions at s

NN

=5.02 TeV. Phys. Rev. Lett., 128(10), 2022, 102001, 10.1103/PhysRevLett.128.102001 arXiv:2107.12984.[177] Hulcher, Zachary, Pablos, Daniel, Rajagopal, Krishna, Resolution effects in the hybrid strong/weak coupling model. J. High Energy Phys., 03, 2018, 010, 10.1007/JHEP03(2018)010 arXiv:1707.05245.[178] Caucal, P., Iancu, E., Soyez, G., Deciphering the z

g

distribution in ultrarelativistic heavy ion collisions. J. High Energy Phys., 10, 2019, 273, 10.1007/JHEP10(2019)273 arXiv:1907.04866.[179] Casalderrey-Solana, J., Milhano, G., Pablos, D., Rajagopal, K., Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma. J. High Energy Phys., 01, 2020, 044, 10.1007/JHEP01(2020)044 arXiv:1907.11248.[180] Caucal, P., Iancu, E., Soyez, G., Jet radiation in a longitudinally expanding medium. J. High Energy Phys., 04, 2021, 209, 10.1007/JHEP04(2021)209 arXiv:2012.01457.[181] Sirunyan, Albert M., et al. Study of jet quenching with isolated-photon+jet correlations in PbPb and pp collisions at s

NN

= 5.02 TeV. Phys. Lett. B 785 (2018), 14–39, 10.1016/j.physletb.2018.07.061 arXiv:1711.09738.[182] Aaboud, Morad, et al. Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at s

NN

=5.02 TeV with the ATLAS detector. Phys. Lett. B 790 (2019), 108–128, 10.1016/j.physletb.2018.10.076 arXiv:1805.05635.[183] Adamczyk, L., et al. Measurements of jet quenching with semi-inclusive hadron+jet distributions in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. C, 96(2), 2017, 024905, 10.1103/PhysRevC.96.024905 arXiv:1702.01108.[184] D'Eramo, Francesco, Rajagopal, Krishna, Yin, Yi, Molière scattering in quark-gluon plasma: finding point-like scatterers in a liquid. J. High Energy Phys., 01, 2019, 172, 10.1007/JHEP01(2019)172 arXiv:1808.03250.[185] D'Eramo, Francesco, Rajagopal, Krishna, Yin, Yi, Finding the scatterers in hot quark soup. PoS, HardProbes2018, 2018, 066, 10.22323/1.345.0066 arXiv:1812.06878.[186] Barata, João, Mehtar-Tani, Yacine, Soto-Ontoso, Alba, Tywoniuk, Konrad, Revisiting transverse momentum broadening in dense QCD media. Phys. Rev. D, 104(5), 2021, 054047, 10.1103/PhysRevD.104.054047 arXiv:2009.13667.[187] Cè, Marco, Harris, Tim, Meyer, Harvey B., Toniato, Arianna, Deep inelastic scattering on the quark-gluon plasma. J. High Energy Phys., 03, 2021, 035, 10.1007/JHEP03(2021)035 arXiv:2012.07522.[188] Hulcher, Z., Pablos, D., Rajagopal, K., Sensitivity of jet observables to the presence of quasi-particles in QGP. 29th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, 8 2022 arXiv:2208.13593.[189] Chatrchyan, Serguei, et al. Evidence of b-jet quenching in PbPb collisions at s

NN

=2.76 TeV. Phys. Rev. Lett., 113(13), 2014, 132301, 10.1103/PhysRevLett.113.132301 Phys. Rev. Lett., 115, 2015, 029903 (Erratum) arXiv:1312.4198.[190] Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector. arXiv:2204.13530, 4 2022.[191] Sirunyan, Albert M., et al. Comparing transverse momentum balance of b jet pairs in pp and PbPb collisions at s

NN

=5.02 TeV. J. High Energy Phys., 03, 2018, 181, 10.1007/JHEP03(2018)181 arXiv:1802.00707.[192] Brewer, Jasmine, Thaler, Jesse, Turner, Andrew P., Data-driven quark and gluon jet modification in heavy-ion collisions. Phys. Rev. C, 103(2), 2021, L021901, 10.1103/PhysRevC.103.L021901 arXiv:2008.08596.[193] Ying, Yueyang, Brewer, Jasmine, Chen, Yi, Lee, Yen-Jie, Data-driven extraction of the substructure of quark and gluon jets in proton-proton and heavy-ion collisions. arXiv:2204.00641, 4 2022.[194] Adam, Jaroslav, et al. Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisions at s

NN

=2.76 TeV. J. High Energy Phys., 09, 2015, 170, 10.1007/JHEP09(2015)170 arXiv:1506.03984.[195] Putschke, J.H., et al. The JETSCAPE framework. arXiv:1903.07706, 3 2019.[196] Zapp, Korinna C., Krauss, Frank, Wiedemann, Urs A., A perturbative framework for jet quenching. J. High Energy Phys., 03, 2013, 080, 10.1007/JHEP03(2013)080 arXiv:1212.1599.[197] Zapp, Korinna C., JEWEL 2.0.0: directions for use. Eur. Phys. J. C, 74(2), 2014, 2762, 10.1140/epjc/s10052-014-2762-1 arXiv:1311.0048.[198] Caucal, P., Iancu, E., Mueller, A.H., Soyez, G., Vacuum-like jet fragmentation in a dense QCD medium. Phys. Rev. Lett., 120, 2018, 232001, 10.1103/PhysRevLett.120.232001 arXiv:1801.09703.[199] Chien, Yang-Ting, Vitev, Ivan, Probing the hardest branching within jets in heavy-ion collisions. Phys. Rev. Lett., 119(11), 2017, 112301, 10.1103/PhysRevLett.119.112301 arXiv:1608.07283.[200] Chang, Ning-Bo, Probing medium-induced jet splitting in heavy-ion collisions. PoS, HardProbes2018, 2019, 076, 10.22323/1.345.0076.[201] Casalderrey-Solana, Jorge, Gulhan, Doga Can, Milhano, José Guilherme, Pablos, Daniel, Rajagopal, Krishna, A hybrid strong/weak coupling approach to jet quenching. J. High Energy Phys., 10, 2014, 019, 10.1007/JHEP09(2015)175 J. High Energy Phys., 09, 2015, 175 (Erratum) arXiv:1405.3864.[202] Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector. arXiv:2211.11470, 11 2022.[203] Khachatryan, Vardan, et al. Correlations between jets and charged particles in PbPb and pp collisions at s

NN

=2.76 TeV. J. High Energy Phys., 02, 2016, 156, 10.1007/JHEP02(2016)156 arXiv:1601.00079.[204] Khachatryan, Vardan, et al. Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at s

NN

=2.76 TeV. J. High Energy Phys., 11, 2016, 055, 10.1007/JHEP11(2016)055 arXiv:1609.02466.[205] Sirunyan, Albert M., et al. Jet properties in PbPb and pp collisions at s

NN

=5.02 TeV. J. High Energy Phys., 05, 2018, 006, 10.1007/JHEP05(2018)006 arXiv:1803.00042.[206] Aad, Georges, et al. Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and pp collisions at s

NN

=5.02 TeV with the ATLAS detector. Phys. Rev. C, 100(6), 2019, 064901, 10.1103/PhysRevC.100.064901 Phys. Rev. C, 101, 2020, 059903 (Erratum) arXiv:1908.05264.[207] Chatrchyan, Serguei, et al. Measurement of jet fragmentation into charged particles in pp and PbPb collisions at s

NN

=2.76 TeV. J. High Energy Phys., 10, 2012, 087, 10.1007/JHEP10(2012)087 arXiv:1205.5872.[208] Adam, Jaroslav, et al. Measurement of inclusive charged-particle jet production in Au + Au collisions at s

NN

=200 GeV. Phys. Rev. C, 102(5), 2020, 054913, 10.1103/PhysRevC.102.054913 arXiv:2006.00582.[209] Aad, Georges, et al. Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at s

NN

= 2.76 TeV with the ATLAS detector. Phys. Lett. B 719 (2013), 220–241, 10.1016/j.physletb.2013.01.024 arXiv:1208.1967.[210] Acharya, Shreyasi, et al. Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at s

NN

= 5.02 TeV. Phys. Rev. C, 101(3), 2020, 034911, 10.1103/PhysRevC.101.034911 arXiv:1909.09718.[211] Sirunyan, Albert M., et al. First measurement of large area jet transverse momentum spectra in heavy-ion collisions. J. High Energy Phys., 05, 2021, 284, 10.1007/JHEP05(2021)284 arXiv:2102.13080.[212] Sirunyan, Albert M., et al. Using Z boson events to study parton-medium interactions in Pb-Pb collisions. Phys. Rev. Lett., 128(12), 2022, 122301, 10.1103/PhysRevLett.128.122301 arXiv:2103.04377.[213] Schenke, Bjoern, Gale, Charles, Jeon, Sangyong, MARTINI: an event generator for relativistic heavy-ion collisions. Phys. Rev. C, 80, 2009, 054913, 10.1103/PhysRevC.80.054913 arXiv:0909.2037.[214] He, Yayun, Cao, Shanshan, Chen, Wei, Luo, Tan, Pang, Long-Gang, Wang, Xin-Nian, Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions. Phys. Rev. C, 99(5), 2019, 054911, 10.1103/PhysRevC.99.054911 arXiv:1809.02525.[215] Ke, Weiyao, Wang, Xin-Nian, QGP modification to single inclusive jets in a calibrated transport model. J. High Energy Phys., 05, 2021, 041, 10.1007/JHEP05(2021)041 arXiv:2010.13680.[216] Burke, Karen M., et al. Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions. Phys. Rev. C, 90(1), 2014, 014909, 10.1103/PhysRevC.90.014909 arXiv:1312.5003.[217] Adam, Jaroslav, et al. Azimuthal anisotropy of charged jet production in s

NN

= 2.76 TeV Pb-Pb collisions. Phys. Lett. B 753 (2016), 511–525, 10.1016/j.physletb.2015.12.047 arXiv:1509.07334.[218] Aad, Georges, et al. Measurements of azimuthal anisotropies of jet production in Pb+Pb collisions at s

NN

= 5.02 TeV with the ATLAS detector. Phys. Rev. C, 105(6), 2022, 064903, 10.1103/PhysRevC.105.064903 arXiv:2111.06606.[219] Azimuthal anisotropy of dijet events in PbPb collisions at s

NN

= 5.02 TeV. arXiv:2210.08325, 10 2022.[220] Dong, Xin, Lee, Yen-Jie, Rapp, Ralf, Open heavy-flavor production in heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 69 (2019), 417–445, 10.1146/annurev-nucl-101918-023806 arXiv:1903.07709.[221] He, Min, van Hees, Hendrik, Rapp, Ralf, Heavy-quark diffusion in the quark-gluon plasma. arXiv:2204.09299, 4 2022.[222] Akiba, Yasuyuki, et al. The hot QCD white paper: exploring the phases of QCD at RHIC and the LHC. 2. arXiv:1502.02730, 2015.[223] Matsui, T., Satz, H., J/ψ suppression by quark-gluon plasma formation. Phys. Lett. B 178 (1986), 416–422, 10.1016/0370-2693(86)91404-8.[224] Rothkopf, Alexander, Heavy quarkonium in extreme conditions. Phys. Rep. 858 (2020), 1–117, 10.1016/j.physrep.2020.02.006 arXiv:1912.02253.[225] Akamatsu, Yukinao, Quarkonium in quark–gluon plasma: open quantum system approaches re-examined. Prog. Part. Nucl. Phys., 123, 2022, 103932, 10.1016/j.ppnp.2021.103932 arXiv:2009.10559.[226] Sharma, Rishi, Quarkonium propagation in the quark–gluon plasma. Eur. Phys. J. Spec. Top. 230:3 (2021), 697–718, 10.1140/epjs/s11734-021-00025-z arXiv:2101.04268.[227] Yao, Xiaojun, Open quantum systems for quarkonia. Int. J. Mod. Phys. A, 36(20), 2021, 2130010, 10.1142/S0217751X21300106 arXiv:2102.01736.[228] Bouttefeux, A., Laine, M., Mass-suppressed effects in heavy quark diffusion. J. High Energy Phys., 12, 2020, 150, 10.1007/JHEP12(2020)150 arXiv:2010.07316.[229] Altenkort, Luis, Eller, Alexander M., Kaczmarek, Olaf, Mazur, Lukas, Moore, Guy D., Shu, Hai-Tao, Heavy quark momentum diffusion from the lattice using gradient flow. Phys. Rev. D, 103(1), 2021, 014511, 10.1103/PhysRevD.103.014511 arXiv:2009.13553.[230] Mayer-Steudte, Julian, Brambilla, Nora, Leino, Viljami, Petreczky, Peter, Chromoelectric and chromomagnetic correlators at high temperature from gradient flow. PoS, LATTICE2021, 2022, 318, 10.22323/1.396.0318 arXiv:2111.10340.[231] Beraudo, A., et al. Extraction of heavy-flavor transport coefficients in QCD matter. Nucl. Phys. A 979 (2018), 21–86, 10.1016/j.nuclphysa.2018.09.002 arXiv:1803.03824.[232] Cao, Shanshan, et al. Toward the determination of heavy-quark transport coefficients in quark-gluon plasma. Phys. Rev. C, 99(5), 2019, 054907, 10.1103/PhysRevC.99.054907 arXiv:1809.07894.[233] Adam, Jaroslav, et al. First measurement of Λ

c

baryon production in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. Lett., 124(17), 2020, 172301, 10.1103/PhysRevLett.124.172301 arXiv:1910.14628.[234] Sirunyan, Albert M., et al. Production of Λ

c

+ baryons in proton-proton and lead-lead collisions at s

NN

= 5.02 TeV. Phys. Lett. B, 803, 2020, 135328, 10.1016/j.physletb.2020.135328 arXiv:1906.03322.[235] Acharya, Shreyasi, et al. Constraining hadronization mechanisms with Λ

c

+/D0 production ratios in Pb-Pb collisions at s

NN

=5.02 TeV. arXiv:2112.08156, 12 2021.[236] Measurement of the Λ

c

+ to D0 production cross-section ratio in peripheral PbPb collisions. arXiv:2210.06939, 10 2022.[237] He, Min, Rapp, Ralf, Hadronization and charm-hadron ratios in heavy-ion collisions. Phys. Rev. Lett., 124(4), 2020, 042301, 10.1103/PhysRevLett.124.042301 arXiv:1905.09216.[238] Plumari, Salvatore, Minissale, Vincenzo, Das, Santosh K., Coci, G., Greco, V., Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC. Eur. Phys. J. C, 78(4), 2018, 348, 10.1140/epjc/s10052-018-5828-7 arXiv:1712.00730.[239] Andronic, Anton, Braun-Munzinger, Peter, Köhler, Markus K., Mazeliauskas, Aleksas, Redlich, Krzysztof, Stachel, Johanna, Vislavicius, Vytautas, The multiple-charm hierarchy in the statistical hadronization model. J. High Energy Phys., 07, 2021, 035, 10.1007/JHEP07(2021)035 arXiv:2104.12754.[240] Zhao, Jiaxing, Shi, Shuzhe, Xu, Nu, Zhuang, Pengfei, Sequential coalescence with charm conservation in high energy nuclear collisions. arXiv:1805.10858, 5 2018.[241] Cho, Sungtae, Sun, Kai-Jia, Ko, Che Ming, Lee, Su Houng, Oh, Yongseok, Charmed hadron production in an improved quark coalescence model. Phys. Rev. C, 101(2), 2020, 024909, 10.1103/PhysRevC.101.024909 arXiv:1905.09774.[242] Cao, Shanshan, Sun, Kai-Jia, Li, Shu-Qing, Liu, Shuai Y.F., Xing, Wen-Jing, Qin, Guang-You, Ko, Che Ming, Charmed hadron chemistry in relativistic heavy-ion collisions. Phys. Lett. B, 807, 2020, 135561, 10.1016/j.physletb.2020.135561 arXiv:1911.00456.[243] Adam, J., et al. Observation of D

s

±/D0 enhancement in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. Lett., 127, 2021, 092301, 10.1103/PhysRevLett.127.092301 arXiv:2101.11793.[244] Acharya, Shreyasi, et al. Measurement of prompt D

s

+-meson production and azimuthal anisotropy in Pb–Pb collisions at s

NN

=5.02 TeV. Phys. Lett. B, 827, 2022, 136986, 10.1016/j.physletb.2022.136986 arXiv:2110.10006.[245] Tumasyan, Armen, et al. Observation of Bs0 mesons and measurement of the Bs0/B+ yield ratio in PbPb collisions at image 1 TeV. Phys. Lett. B, 829, 2022, 137062, 10.1016/j.physletb.2022.137062 arXiv:2109.01908.[246] Kang, Zhong-Bo, Ringer, Felix, Vitev, Ivan, Effective field theory approach to open heavy flavor production in heavy-ion collisions. J. High Energy Phys., 03, 2017, 146, 10.1007/JHEP03(2017)146 arXiv:1610.02043.[247] Li, Hai Tao, Vitev, Ivan, Inclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisions. J. High Energy Phys., 07, 2019, 148, 10.1007/JHEP07(2019)148 arXiv:1811.07905.[248] Buzzatti, Alessandro, Gyulassy, Miklos, Jet flavor tomography of quark gluon plasmas at RHIC and LHC. Phys. Rev. Lett., 108, 2012, 022301, 10.1103/PhysRevLett.108.022301 arXiv:1106.3061.[249] Doksh*tzer, Yuri L., Kharzeev, D.E., Heavy quark colorimetry of QCD matter. Phys. Lett. B 519 (2001), 199–206, 10.1016/S0370-2693(01)01130-3 arXiv:hep-ph/0106202.[250] Abdallah, M.S., et al. Evidence of mass ordering of charm and bottom quark energy loss in Au+Au collisions at RHIC. Eur. Phys. J. C, 82(12), 2022, 1150, 10.1140/epjc/s10052-022-11003-7 arXiv:2111.14615.[251] Acharya, U.A., et al. Charm- and bottom-quark production in Au+Au collisions at s

NN

= 200 GeV. arXiv:2203.17058, 3 2022.[252] Sirunyan, Albert M., et al. Studies of beauty suppression via nonprompt D0 mesons in Pb-Pb collisions at Q2=4 GeV2. Phys. Rev. Lett., 123(2), 2019, 022001, 10.1103/PhysRevLett.123.022001 arXiv:1810.11102.[253] Sirunyan, Albert M., et al. Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV. Eur. Phys. J. C, 78(6), 2018, 509, 10.1140/epjc/s10052-018-5950-6 arXiv:1712.08959.[254] Sirunyan, Albert M., et al. Nuclear modification factor of D0 mesons in PbPb collisions at s

NN

=5.02 TeV. Phys. Lett. B 782 (2018), 474–496, 10.1016/j.physletb.2018.05.074 arXiv:1708.04962.[255] Acharya, Shreyasi, et al. Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at s

NN

= 5.02 TeV. Phys. Lett. B, 804, 2020, 135377, 10.1016/j.physletb.2020.135377 arXiv:1910.09110.[256] Tumasyan, Armen, et al. Observation of the B

c

+ meson in Pb-Pb and pp collisions at s

NN

=5.02 TeV and measurement of its nuclear modification factor. Phys. Rev. Lett., 128(25), 2022, 252301, 10.1103/PhysRevLett.128.252301 arXiv:2201.02659.[257] Li, Hai Tao, Vitev, Ivan, Inverting the mass hierarchy of jet quenching effects with prompt b-jet substructure. Phys. Lett. B 793 (2019), 259–264, 10.1016/j.physletb.2019.04.052 arXiv:1801.00008.[258] Bala, Dibyendu, Kaczmarek, Olaf, Larsen, Rasmus, Mukherjee, Swagato, Parkar, Gaurang, Petreczky, Peter, Rothkopf, Alexander, Weber, Johannes Heinrich, Static quark-antiquark interactions at nonzero temperature from lattice QCD. Phys. Rev. D, 105(5), 2022, 054513, 10.1103/PhysRevD.105.054513 arXiv:2110.11659.[259] Mukherjee, Swagato, Petreczky, Peter, Sharma, Sayantan, Charm degrees of freedom in the quark gluon plasma. Phys. Rev. D, 93(1), 2016, 014502, 10.1103/PhysRevD.93.014502 arXiv:1509.08887.[260] Petreczky, Peter, Sharma, Sayantan, Weber, Johannes Heinrich, Bottomonium melting from screening correlators at high temperature. Phys. Rev. D, 104(5), 2021, 054511, 10.1103/PhysRevD.104.054511 arXiv:2107.11368.[261] Adamczyk, L., et al. Measurement of D0 azimuthal anisotropy at midrapidity in Au+Au collisions at s

NN

=200 GeV. Phys. Rev. Lett., 118(21), 2017, 212301, 10.1103/PhysRevLett.118.212301 arXiv:1701.06060.[262] Adam, Jaroslav, et al. Centrality and transverse momentum dependence of D0-meson production at mid-rapidity in Au+Au collisions at s

NN

=200 GeV. Phys. Rev. C, 99(3), 2019, 034908, 10.1103/PhysRevC.99.034908 arXiv:1812.10224.[263] Acharya, S., et al. Measurement of D0, D+, D⁎+ and D

s

+ production in Pb-Pb collisions at s

NN

=5.02 TeV. J. High Energy Phys., 10, 2018, 174, 10.1007/JHEP10(2018)174 arXiv:1804.09083.[264] Sirunyan, Albert M., et al. Measurement of prompt D0 meson azimuthal anisotropy in Pb-Pb collisions at s

NN

= 5.02 TeV. Phys. Rev. Lett., 120(20), 2018, 202301, 10.1103/PhysRevLett.120.202301 arXiv:1708.03497.[265] Sirunyan, Albert M., et al. Measurement of prompt D0 and D‾0 meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at s

NN

= 5.02 TeV. Phys. Lett. B, 816, 2021, 136253, 10.1016/j.physletb.2021.136253 arXiv:2009.12628.[266] Acharya, Shreyasi, et al. Prompt D0, D+, and D⁎+ production in Pb–Pb collisions at s

NN

= 5.02 TeV. J. High Energy Phys., 01, 2022, 174, 10.1007/JHEP01(2022)174 arXiv:2110.09420.[267] Adare, A., et al. J/ψ suppression at forward rapidity in Au+Au collisions at s

NN

=200 GeV. Phys. Rev. C, 84, 2011, 054912, 10.1103/PhysRevC.84.054912 arXiv:1103.6269.[268] Adare, A., et al. Transverse-momentum dependence of the J/ψ nuclear modification in d+Au collisions at s

NN

=200 GeV. Phys. Rev. C, 87(3), 2013, 034904, 10.1103/PhysRevC.87.034904 arXiv:1204.0777.[269] Acharya, U., et al. Measurement of J/ψ at forward and backward rapidity in p+p, p+Al, p+Au, and 3He+Au collisions at s

NN

=200GeV. Phys. Rev. C, 102(1), 2020, 014902, 10.1103/PhysRevC.102.014902 arXiv:1910.14487.[270] Adare, A., et al. J/ψ suppression at forward rapidity in Au+Au collisions at s

NN

=39 and 62.4 GeV. Phys. Rev. C, 86, 2012, 064901, 10.1103/PhysRevC.86.064901 arXiv:1208.2251.[271] Adamczyk, L., et al. Energy dependence of J/ψ production in Au+Au collisions at s

NN

= 39, 62.4 and 200 GeV. Phys. Lett. B 771 (2017), 13–20, 10.1016/j.physletb.2017.04.078 arXiv:1607.07517.[272] Acharya, Shreyasi, et al. Studies of J/ψ production at forward rapidity in Pb-Pb collisions at s

NN

= 5.02 TeV. J. High Energy Phys., 02, 2020, 041, 10.1007/JHEP02(2020)041 arXiv:1909.03158.[273] Adamczyk, L., et al. Measurement of J/ψ azimuthal anisotropy in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. Lett., 111(5), 2013, 052301, 10.1103/PhysRevLett.111.052301 arXiv:1212.3304.[274] Acharya, Shreyasi, et al. J/ψ elliptic and triangular flow in Pb-Pb collisions at s

NN

= 5.02 TeV. J. High Energy Phys., 10, 2020, 141, 10.1007/JHEP10(2020)141 arXiv:2005.14518.[275] Adare, A., et al. Nuclear modification of ψ

c

,J/ψ production in d+Au collisions at s

NN

=200 GeV. Phys. Rev. Lett., 111(20), 2013, 202301, 10.1103/PhysRevLett.111.202301 arXiv:1305.5516.[276] Adare, A., et al. Measurement of the relative yields of ψ(2S) to ψ(1S) mesons produced at forward and backward rapidity in p+p, p+Al, p+Au, and 3He+Au collisions at s

NN

=200 GeV. Phys. Rev. C, 95(3), 2017, 034904, 10.1103/PhysRevC.95.034904 arXiv:1609.06550.[277] Acharya, U.A., et al. Measurement of ψ(2S) nuclear modification at backward and forward rapidity in p + p, p + Al, and p + Au collisions at s

NN

=200 GeV. Phys. Rev. C, 105(6), 2022, 064912, 10.1103/PhysRevC.105.064912 arXiv:2202.03863.[278] Sirunyan, Albert M., et al. Relative modification of prompt ψ(2S) and J/ψ yields from pp to PbPb collisions at s

NN

=5.02 TeV. Phys. Rev. Lett., 118(16), 2017, 162301, 10.1103/PhysRevLett.118.162301 arXiv:1611.01438.[279] Aaij, Roel, et al. Study of ψ(2S) production and cold nuclear matter effects in pPb collisions at s

NN

=5TeV. J. High Energy Phys., 03, 2016, 133, 10.1007/JHEP03(2016)133 arXiv:1601.07878.[280] Aaboud, Morad, et al. Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02TeV with the ATLAS detector. Eur. Phys. J. C, 78(3), 2018, 171, 10.1140/epjc/s10052-018-5624-4 arXiv:1709.03089.[281] Sirunyan, Albert M., et al. Measurement of prompt ψ(2S) production cross sections in proton-lead and proton-proton collisions at s

NN

= 5.02 TeV. Phys. Lett. B 790 (2019), 509–532, 10.1016/j.physletb.2019.01.058 arXiv:1805.02248.[282] Acharya, Shreyasi, et al. Centrality dependence of J/ψ and ψ(2S) production and nuclear modification in p-Pb collisions at s

NN

= 8.16 TeV. J. High Energy Phys., 02, 2021, 002, 10.1007/JHEP02(2021)002 arXiv:2008.04806.[283] Tumasyan, Armen, et al. Nuclear modification of ϒ states in pPb collisions at s

NN

= 5.02 TeV. Phys. Lett. B, 835, 2022, 137397, 10.1016/j.physletb.2022.137397 arXiv:2202.11807.[284] ψ(2S) suppression in Pb-Pb collisions at the LHC. arXiv:2210.08893, 10 2022.[285] Sirunyan, Albert M., et al. Measurement of nuclear modification factors of ϒ(1S), ϒ(2S), and ϒ(3S) mesons in PbPb collisions at s

NN

= 5.02 TeV. Phys. Lett. B 790 (2019), 270–293, 10.1016/j.physletb.2019.01.006 arXiv:1805.09215.[286] Adare, A., et al. Measurement of ϒ(1S+2S+3S) production in p+p and Au+Au collisions at s

NN

=200 GeV. Phys. Rev. C, 91(2), 2015, 024913, 10.1103/PhysRevC.91.024913 arXiv:1404.2246.[287] Adamczyk, L., et al. ϒ production in U + U collisions at s

NN

= 193 GeV measured with the STAR experiment. Phys. Rev. C, 94(6), 2016, 064904, 10.1103/PhysRevC.94.064904 arXiv:1608.06487.[288] Observation of sequential ϒ suppression in Au+Au collisions at s

NN

= 200 GeV with the STAR experiment. arXiv:2207.06568, 7 2022.[289] Schenke, Björn, The smallest fluid on Earth. Rep. Prog. Phys., 84(8), 2021, 082301, 10.1088/1361-6633/ac14c9 arXiv:2102.11189.[290] Mäntysaari, Heikki, Schenke, Björn, Evidence of strong proton shape fluctuations from incoherent diffraction. Phys. Rev. Lett., 117(5), 2016, 052301, 10.1103/PhysRevLett.117.052301 arXiv:1603.04349.[291] Mäntysaari, Heikki, Roy, Kaushik, Salazar, Farid, Schenke, Björn, Gluon imaging using azimuthal correlations in diffractive scattering at the electron-ion collider. Phys. Rev. D, 103(9), 2021, 094026, 10.1103/PhysRevD.103.094026 arXiv:2011.02464.[292] Mäntysaari, Heikki, Mueller, Niklas, Schenke, Björn, Diffractive dijet production and Wigner distributions from the color glass condensate. Phys. Rev. D, 99(7), 2019, 074004, 10.1103/PhysRevD.99.074004 arXiv:1902.05087.[293] Mäntysaari, Heikki, Mueller, Niklas, Salazar, Farid, Schenke, Björn, Multigluon correlations and evidence of saturation from dijet measurements at an electron-ion collider. Phys. Rev. Lett., 124(11), 2020, 112301, 10.1103/PhysRevLett.124.112301 arXiv:1912.05586.[294] Mäntysaari, Heikki, Salazar, Farid, Schenke, Björn, Nuclear geometry at high energy from exclusive vector meson production. Phys. Rev. D, 106(7), 2022, 074019, 10.1103/PhysRevD.106.074019 arXiv:2207.03712.[295] Krasnitz, Alex, Venugopalan, Raju, Nonperturbative computation of gluon minijet production in nuclear collisions at very high-energies. Nucl. Phys. B, 557, 1999, 237, 10.1016/S0550-3213(99)00366-1 arXiv:hep-ph/9809433.[296] Krasnitz, Alex, Venugopalan, Raju, The initial energy density of gluons produced in very high-energy nuclear collisions. Phys. Rev. Lett. 84 (2000), 4309–4312, 10.1103/PhysRevLett.84.4309 arXiv:hep-ph/9909203.[297] Krasnitz, Alex, Venugopalan, Raju, The initial gluon multiplicity in heavy ion collisions. Phys. Rev. Lett. 86 (2001), 1717–1720, 10.1103/PhysRevLett.86.1717 arXiv:hep-ph/0007108.[298] Schenke, Bjoern, Tribedy, Prithwish, Venugopalan, Raju, Fluctuating glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett., 108, 2012, 252301, 10.1103/PhysRevLett.108.252301 arXiv:1202.6646.[299] Schenke, Bjoern, Tribedy, Prithwish, Venugopalan, Raju, Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions. Phys. Rev. C, 86, 2012, 034908, 10.1103/PhysRevC.86.034908 arXiv:1206.6805.[300] Giacalone, Giuliano, Schenke, Björn, Shen, Chun, Constraining the nucleon size with relativistic nuclear collisions. Phys. Rev. Lett., 128(4), 2022, 042301, 10.1103/PhysRevLett.128.042301 arXiv:2111.02908.[301] Bally, Benjamin, et al. Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart. arXiv:2209.11042, 9 2022.[302] ALICE luminosity determination for Pb−Pb collisions at s

NN

=5.02 TeV. arXiv:2204.10148, 4 2022.[303] Nijs, Govert, van der Schee, Wilke, Hadronic nucleus-nucleus cross section and the nucleon size. Phys. Rev. Lett., 129(23), 2022, 232301, 10.1103/PhysRevLett.129.232301 arXiv:2206.13522.[304] Abdallah, Mohamed, et al. Search for the chiral magnetic effect with isobar collisions at s

NN

=200 GeV by the STAR Collaboration at the BNL relativistic heavy ion collider. Phys. Rev. C, 105(1), 2022, 014901, 10.1103/PhysRevC.105.014901 arXiv:2109.00131.[305] Jia, Jiangyong, Zhang, Chun-Jian, Scaling approach to nuclear structure in high-energy heavy-ion collisions. arXiv:2111.15559, 11 2021.[306] Jia, Jiangyong, Giacalone, Giuliano, Zhang, Chunjian, Separating the impact of nuclear skin and nuclear deformation on elliptic flow and its fluctuations in high-energy isobar collisions. arXiv:2206.10449, 6 2022.[307] Xu, Hao-jie, Li, Hanlin, Wang, Xiaobao, Shen, Caiwan, Wang, Fuqiang, Determine the neutron skin type by relativistic isobaric collisions. Phys. Lett. B, 819, 2021, 136453, 10.1016/j.physletb.2021.136453 arXiv:2103.05595.[308] Xu, Hao-jie, Zhao, Wenbin, Li, Hanlin, Zhou, Ying, Chen, Lie-Wen, Wang, Fuqiang, Probing nuclear structure with mean transverse momentum in relativistic isobar collisions. arXiv:2111.14812, 11 2021.[309] Cao, Yuchen, Agbemava, Sylvester E., Afanasjev, Anatoli V., Nazarewicz, Witold, Olsen, Erik, Landscape of pear-shaped even-even nuclei. Phys. Rev. C, 102(2), 2020, 024311, 10.1103/PhysRevC.102.024311 arXiv:2004.01319.[310] Bertulani, Carlos A., Klein, Spencer R., Nystrand, Joakim, Physics of ultra-peripheral nuclear collisions. Annu. Rev. Nucl. Part. Sci. 55 (2005), 271–310, 10.1146/annurev.nucl.55.090704.151526 arXiv:nucl-ex/0502005.[311] Baltz, A.J., The physics of ultraperipheral collisions at the LHC. Phys. Rep. 458 (2008), 1–171, 10.1016/j.physrep.2007.12.001 arXiv:0706.3356.[312] Contreras, J.G., Tapia Takaki, J.D., Ultra-peripheral heavy-ion collisions at the LHC. Int. J. Mod. Phys. A, 30, 2015, 1542012, 10.1142/S0217751X15420129.[313] Klein, Spencer, Nystrand, Joakim, Ultraperipheral nuclear collisions. Phys. Today 70:10 (2017), 40–47, 10.1063/PT.3.3727.[314] Klein, Spencer R., Mäntysaari, Heikki, Imaging the nucleus with high-energy photons. Nat. Rev. Phys. 1:11 (2019), 662–674, 10.1038/s42254-019-0107-6 arXiv:1910.10858.[315] Klein, Spencer, Steinberg, Peter, Photonuclear and two-photon interactions at high-energy nuclear colliders. Annu. Rev. Nucl. Part. Sci. 70 (2020), 323–354, 10.1146/annurev-nucl-030320-033923 arXiv:2005.01872.[316] Eskola, Kari J., Flett, Christopher A., Guzey, Vadim, Löytäinen, Topi, Paukkunen, Hannu, Next-to-leading order perturbative QCD predictions for exclusive J/ψ photoproduction in oxygen-oxygen and lead-lead collisions at the LHC. arXiv:2210.16048, 10 2022.[317] Adler, C., et al. Coherent rho0 production in ultraperipheral heavy ion collisions. Phys. Rev. Lett., 89, 2002, 272302, 10.1103/PhysRevLett.89.272302 arXiv:nucl-ex/0206004.[318] Abelev, B.I., et al. ρ0 photoproduction in ultraperipheral relativistic heavy ion collisions at s

NN

= 200 GeV. Phys. Rev. C, 77, 2008, 034910, 10.1103/PhysRevC.77.034910 arXiv:0712.3320.[319] Agakishiev, G., et al. ρ0 photoproduction in AuAu collisions at s

NN

=62.4 GeV with STAR. Phys. Rev. C, 85, 2012, 014910, 10.1103/PhysRevC.85.014910 arXiv:1107.4630.[320] Adamczyk, L., et al. Coherent diffractive photoproduction of ρ0 mesons on gold nuclei at 200 GeV/nucleon-pair at the relativistic heavy ion collider. Phys. Rev. C, 96(5), 2017, 054904, 10.1103/PhysRevC.96.054904 arXiv:1702.07705.[321] Khachatryan, Vardan, et al. Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at s

NN

= 2.76 TeV with the CMS experiment. Phys. Lett. B 772 (2017), 489–511, 10.1016/j.physletb.2017.07.001 arXiv:1605.06966.[322] Abbas, E., et al. Charmonium and e+e pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at s

NN

=2.76 TeV. Eur. Phys. J. C, 73(11), 2013, 2617, 10.1140/epjc/s10052-013-2617-1 arXiv:1305.1467.[323] Acharya, Shreyasi, et al. Coherent J/ψ photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at s

NN

=5.02 TeV. Phys. Lett. B, 798, 2019, 134926, 10.1016/j.physletb.2019.134926 arXiv:1904.06272.[324] Adam, Jaroslav, et al. Coherent ψ(2S) photo-production in ultra-peripheral Pb Pb collisions at s

NN

= 2.76 TeV. Phys. Lett. B 751 (2015), 358–370, 10.1016/j.physletb.2015.10.040 arXiv:1508.05076.[325] Acharya, Shreyasi, et al. Coherent J/ψ and ψ photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at s

NN

=5.02 TeV. Eur. Phys. J. C, 81(8), 2021, 712, 10.1140/epjc/s10052-021-09437-6 arXiv:2101.04577.[326] Sirunyan, Albert M., et al. Measurement of exclusive ρ(770)0 photoproduction in ultraperipheral pPb collisions at s

NN

= 5.02 TeV. Eur. Phys. J. C, 79(8), 2019, 702, 10.1140/epjc/s10052-019-7202-9 arXiv:1902.01339.[327] Acharya, Shreyasi, et al. First measurement of the |t|-dependence of coherent J/ψ photonuclear production. Phys. Lett. B, 817, 2021, 136280, 10.1016/j.physletb.2021.136280 arXiv:2101.04623.[328] Aaij, Roel, et al. Study of coherent J/ψ production in lead-lead collisions at s

NN

= 5 TeV. J. High Energy Phys., 07, 2022, 117, 10.1007/JHEP07(2022)117 arXiv:2107.03223.[329] Study of coherent charmonium production in ultra-peripheral lead-lead collisions. arXiv:2206.08221, 6 2022.[330] Abdallah, Mohamed, et al. Tomography of ultrarelativistic nuclei with polarized photon-gluon collisions. Sci. Adv., 9(1), 2023, eabq3903, 10.1126/sciadv.abq3903 arXiv:2204.01625.[331] Adam, Jaroslav, et al. Measurement of an excess in the yield of J/ψ at very low p

T

in Pb-Pb collisions at s

NN

= 2.76 TeV. Phys. Rev. Lett., 116(22), 2016, 222301, 10.1103/PhysRevLett.116.222301 arXiv:1509.08802.[332] Zha, W., Klein, S.R., Ma, R., Ruan, L., Todoroki, T., Tang, Z., Xu, Z., Yang, C., Yang, Q., Yang, S., Coherent J/ψ photoproduction in hadronic heavy-ion collisions. Phys. Rev. C, 97(4), 2018, 044910, 10.1103/PhysRevC.97.044910 arXiv:1705.01460.[333] Adam, J., et al. Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at s

NN

= 200 GeV and U+U collisions at s

NN

= 193 GeV. Phys. Rev. Lett., 123(13), 2019, 132302, 10.1103/PhysRevLett.123.132302 arXiv:1904.11658.[334] Abdallah, Mohamed, et al. Probing the gluonic structure of the deuteron with J/ψ photoproduction in d+Au ultraperipheral collisions. Phys. Rev. Lett., 128(12), 2022, 122303, 10.1103/PhysRevLett.128.122303 arXiv:2109.07625.[335] Azimuthal correlations within exclusive dijets with large momentum transfer in photon-lead collisions. arXiv:2205.00045, 4 2022.[336] Guzey, V., Klasen, M., Diffractive dijet photoproduction in ultraperipheral collisions at the LHC in next-to-leading order QCD. J. High Energy Phys., 04, 2016, 158, 10.1007/JHEP04(2016)158 arXiv:1603.06055.[337] Dumitru, Adrian, Skokov, Vladimir, Ullrich, Thomas, Measuring the Weizsäcker-Williams distribution of linearly polarized gluons at an electron-ion collider through dijet azimuthal asymmetries. Phys. Rev. C, 99(1), 2019, 015204, 10.1103/PhysRevC.99.015204 arXiv:1809.02615.[338] Jung, Hannes, Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP. Comput. Phys. Commun. 86 (1995), 147–161, 10.1016/0010-4655(94)00150-Z.[339] Hatta, Yosh*taka, Xiao, Bo-Wen, Yuan, Feng, Zhou, Jian, Anisotropy in dijet production in exclusive and inclusive processes. Phys. Rev. Lett., 126(14), 2021, 142001, 10.1103/PhysRevLett.126.142001 arXiv:2010.10774.[340] Hatta, Yosh*taka, Xiao, Bo-Wen, Yuan, Feng, Zhou, Jian, Azimuthal angular asymmetry of soft gluon radiation in jet production. Phys. Rev. D, 104(5), 2021, 054037, 10.1103/PhysRevD.104.054037 arXiv:2106.05307.[341] Khachatryan, Vardan, et al. Observation of long-range near-side angular correlations in proton-proton collisions at the LHC. J. High Energy Phys., 09, 2010, 091, 10.1007/JHEP09(2010)091 arXiv:1009.4122.[342] Chatrchyan, Serguei, et al. Observation of long-range near-side angular correlations in proton-lead collisions at the LHC. Phys. Lett. B 718 (2013), 795–814, 10.1016/j.physletb.2012.11.025 arXiv:1210.5482.[343] Abelev, Betty, et al. Long-range angular correlations on the near and away side in p-Pb collisions at s

NN

=5.02 TeV. Phys. Lett. B 719 (2013), 29–41, 10.1016/j.physletb.2013.01.012 arXiv:1212.2001.[344] Aad, Georges, et al. Observation of associated near-side and away-side long-range correlations in s

NN

=5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Rev. Lett., 110(18), 2013, 182302, 10.1103/PhysRevLett.110.182302 arXiv:1212.5198.[345] Dusling, Kevin, Li, Wei, Schenke, Björn, Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E, 25(01), 2016, 1630002, 10.1142/S0218301316300022 arXiv:1509.07939.[346] Nagle, James L., Zajc, William A., Small system collectivity in relativistic hadronic and nuclear collisions. Annu. Rev. Nucl. Part. Sci. 68 (2018), 211–235, 10.1146/annurev-nucl-101916-123209 arXiv:1801.03477.[347] Khachatryan, Vardan, et al. Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. B 742 (2015), 200–224, 10.1016/j.physletb.2015.01.034 arXiv:1409.3392.[348] Aad, Georges, et al. Observation of long-range elliptic azimuthal anisotropies in s=13 and 2.76 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett., 116(17), 2016, 172301, 10.1103/PhysRevLett.116.172301 arXiv:1509.04776.[349] Khachatryan, Vardan, et al. Evidence for collective multiparticle correlations in p-Pb collisions. Phys. Rev. Lett., 115(1), 2015, 012301, 10.1103/PhysRevLett.115.012301 arXiv:1502.05382.[350] Khachatryan, Vardan, et al. Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765 (2017), 193–220, 10.1016/j.physletb.2016.12.009 arXiv:1606.06198.[351] Sirunyan, Albert M., et al. Correlations of azimuthal anisotropy Fourier harmonics with subevent cumulants in pPb collisions at s

NN

=8.16 TeV. Phys. Rev. C, 103(1), 2021, 014902, 10.1103/PhysRevC.103.014902 arXiv:1905.09935.[352] Sirunyan, Albert M., et al. Multiparticle correlation studies in pPb collisions at s

NN

= 8.16 TeV. Phys. Rev. C, 101(1), 2020, 014912, 10.1103/PhysRevC.101.014912 arXiv:1904.11519.[353] Sirunyan, Albert M., et al. Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions. Phys. Rev. C, 98(4), 2018, 044902, 10.1103/PhysRevC.98.044902 arXiv:1710.07864.[354] Habich, M., Nagle, J.L., Romatschke, P., Particle spectra and HBT radii for simulated central nuclear collisions of C + C, Al + Al, Cu + Cu, Au + Au, and Pb + Pb from s=62.4 - 2760 GeV. Eur. Phys. J. C, 75(1), 2015, 15, 10.1140/epjc/s10052-014-3206-7 arXiv:1409.0040.[355] Shen, Chun, Paquet, Jean-François, Denicol, Gabriel S., Jeon, Sangyong, Gale, Charles, Collectivity and electromagnetic radiation in small systems. Phys. Rev. C, 95(1), 2017, 014906, 10.1103/PhysRevC.95.014906 arXiv:1609.02590.[356] Mace, Mark, Skokov, Vladimir V., Tribedy, Prithwish, Venugopalan, Raju, Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the color glass condensate. Phys. Rev. Lett., 121(5), 2018, 052301, 10.1103/PhysRevLett.121.052301 Phys. Rev. Lett., 123, 2019, 039901 (Erratum) arXiv:1805.09342.[357] Measurements of the elliptic and triangular azimuthal anisotropies in central 3He+Au, d+Au and p+Au collisions at sNN = 200 GeV. arXiv:2210.11352, 10 2022.[358] Adam, Jaroslav, et al. Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nat. Phys. 13 (2017), 535–539, 10.1038/nphys4111 arXiv:1606.07424.[359] Aad, Georges, et al. Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS. Phys. Rev. C, 104(1), 2021, 014903, 10.1103/PhysRevC.104.014903 arXiv:2101.10771.[360] Badea, Anthony, Baty, Austin, Chang, Paoti, Innocenti, Gian Michele, Maggi, Marcello, Mcginn, Christopher, Peters, Michael, Sheng, Tzu-An, Thaler, Jesse, Lee, Yen-Jie, Measurements of two-particle correlations in e+e collisions at 91 GeV with ALEPH archived data. Phys. Rev. Lett., 123(21), 2019, 212002, 10.1103/PhysRevLett.123.212002 arXiv:1906.00489.[361] Abt, I., et al. Two-particle azimuthal correlations as a probe of collective behaviour in deep inelastic ep scattering at HERA. J. High Energy Phys., 04, 2020, 070, 10.1007/JHEP04(2020)070 arXiv:1912.07431.[362] Abt, I., et al. Azimuthal correlations in photoproduction and deep inelastic ep scattering at HERA. J. High Energy Phys., 12, 2021, 102, 10.1007/JHEP12(2021)102 arXiv:2106.12377.[363] Two-particle azimuthal correlations in γp interactions using pPb collisions at s

NN

= 8.16 TeV. arXiv:2204.13486, 4 2022.[364] Zhao, Wenbin, Shen, Chun, Schenke, Björn, Collectivity in ultraperipheral Pb+Pb collisions at the Large Hadron Collider. Phys. Rev. Lett., 129(25), 2022, 252302, 10.1103/PhysRevLett.129.252302 arXiv:2203.06094.[365] Evidence for modification of b quark hadronization in high-multiplicity pp collisions at s=13 TeV. arXiv:2204.13042, 4 2022.[366] Khachatryan, Vardan, et al. Charged-particle nuclear modification factors in PbPb and pPb collisions at s

NN

=5.02 TeV. J. High Energy Phys., 04, 2017, 039, 10.1007/JHEP04(2017)039 arXiv:1611.01664.[367] Khachatryan, Vardan, et al. Measurement of inclusive jet production and nuclear modifications in pPb collisions at s

NN

= 5.02 TeV. Eur. Phys. J. C, 76(7), 2016, 372, 10.1140/epjc/s10052-016-4205-7 arXiv:1601.02001.[368] Adare, A., et al. Centrality-dependent modification of jet-production rates in deuteron-gold collisions at s

NN

=200 GeV. Phys. Rev. Lett., 116(12), 2016, 122301, 10.1103/PhysRevLett.116.122301 arXiv:1509.04657.[369] Adam, Jaroslav, et al. Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at s

NN

=5.02 TeV. Phys. Lett. B 749 (2015), 68–81, 10.1016/j.physletb.2015.07.054 arXiv:1503.00681.[370] Aad, Georges, et al. Centrality and rapidity dependence of inclusive jet production in s

NN

=5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Lett. B 748 (2015), 392–413, 10.1016/j.physletb.2015.07.023 arXiv:1412.4092.[371] Sirunyan, Albert M., et al. Measurements of the charm jet cross section and nuclear modification factor in pPb collisions at s

NN

= 5.02 TeV. Phys. Lett. B 772 (2017), 306–329, 10.1016/j.physletb.2017.06.053 arXiv:1612.08972.[372] Adams, J., et al. Evidence from d + Au measurements for final state suppression of high p(T) hadrons in Au+Au collisions at RHIC. Phys. Rev. Lett., 91, 2003, 072304, 10.1103/PhysRevLett.91.072304 arXiv:nucl-ex/0306024.[373] Adler, S.S., et al. Absence of suppression in particle production at large transverse momentum in S(NN)**(1/2) = 200-GeV d + Au collisions. Phys. Rev. Lett., 91, 2003, 072303, 10.1103/PhysRevLett.91.072303 arXiv:nucl-ex/0306021.[374] Sirunyan, Albert M., et al. Strange hadron production in pp and pPb collisions at s

NN

= 5.02 TeV. Phys. Rev. C, 101(6), 2020, 064906, 10.1103/PhysRevC.101.064906 arXiv:1910.04812.[375] Acharya, Shreyasi, et al. Constraints on jet quenching in p-Pb collisions at s

NN

= 5.02 TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions. Phys. Lett. B 783 (2018), 95–113, 10.1016/j.physletb.2018.05.059 arXiv:1712.05603.[376] Aad, Georges, et al. Transverse momentum and process dependent azimuthal anisotropies in s

NN

=8.16 TeV p+Pb collisions with the ATLAS detector. Eur. Phys. J. C, 80(1), 2020, 73, 10.1140/epjc/s10052-020-7624-4 arXiv:1910.13978.[377] Acharya, S., et al. Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at s

NN

= 5.02 and 8.16 TeV. Phys. Lett. B 780 (2018), 7–20, 10.1016/j.physletb.2018.02.039 arXiv:1709.06807.[378] Sirunyan, A.M., et al. Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at s

NN

= 8.16 TeV. Phys. Rev. Lett., 121(8), 2018, 082301, 10.1103/PhysRevLett.121.082301 arXiv:1804.09767.[379] Sirunyan, Albert M., et al. Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at s

NN

= 8.16 TeV. Phys. Lett. B 791 (2019), 172–194, 10.1016/j.physletb.2019.02.018 arXiv:1810.01473.[380] Aad, Georges, et al. Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in pp collisions at s=13 TeV with the ATLAS detector. Phys. Rev. Lett., 124(8), 2020, 082301, 10.1103/PhysRevLett.124.082301 arXiv:1909.01650.[381] Sirunyan, Albert M., et al. Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies. Phys. Lett. B, 813, 2021, 136036, 10.1016/j.physletb.2020.136036 arXiv:2009.07065.[382] Aoki, Y., Endrodi, G., Fodor, Z., Katz, S.D., Szabo, K.K., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443 (2006), 675–678, 10.1038/nature05120 arXiv:hep-lat/0611014.[383] f*ckushima, Kenji, Sasaki, Chihiro, The phase diagram of nuclear and quark matter at high baryon density. Prog. Part. Nucl. Phys. 72 (2013), 99–154, 10.1016/j.ppnp.2013.05.003 arXiv:1301.6377.[384] Stephanov, Misha A., Rajagopal, K., Shuryak, Edward V., Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81 (1998), 4816–4819, 10.1103/PhysRevLett.81.4816 arXiv:hep-ph/9806219.[385] Stephanov, Misha A., Rajagopal, K., Shuryak, Edward V., Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D, 60, 1999, 114028, 10.1103/PhysRevD.60.114028 arXiv:hep-ph/9903292.[386] Bzdak, Adam, Esumi, Shinichi, Koch, Volker, Liao, Jinfeng, Stephanov, Mikhail, Xu, Nu, Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rep. 853 (2020), 1–87, 10.1016/j.physrep.2020.01.005 arXiv:1906.00936.[387] Bazavov, A., et al. Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data. Phys. Rev. D, 101(7), 2020, 074502, 10.1103/PhysRevD.101.074502 arXiv:2001.08530.[388] Abdallah, Mohamed, et al. Cumulants and correlation functions of net-proton, proton, and antiproton multiplicity distributions in Au+Au collisions at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C, 104(2), 2021, 024902, 10.1103/PhysRevC.104.024902 arXiv:2101.12413.[389] Adamczewski-Musch, J., et al. Proton-number fluctuations in s

NN

=2.4 GeV Au + Au collisions studied with the high-acceptance DiElectron spectrometer (HADES). Phys. Rev. C, 102(2), 2020, 024914, 10.1103/PhysRevC.102.024914 arXiv:2002.08701.[390] Abdallah, M.S., et al. Measurements of proton high order cumulants in s

NN

= 3 GeV Au+Au collisions and implications for the QCD critical point. Phys. Rev. Lett., 128(20), 2022, 202303, 10.1103/PhysRevLett.128.202303 arXiv:2112.00240.[391] Braun-Munzinger, P., Friman, B., Redlich, K., Rustamov, A., Stachel, J., Relativistic nuclear collisions: establishing a non-critical baseline for fluctuation measurements. Nucl. Phys. A, 1008, 2021, 122141, 10.1016/j.nuclphysa.2021.122141 arXiv:2007.02463.[392] Bleicher, M., et al. Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. G 25 (1999), 1859–1896, 10.1088/0954-3899/25/9/308 arXiv:hep-ph/9909407.[393] Bass, S.A., et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41 (1998), 255–369, 10.1016/S0146-6410(98)00058-1 arXiv:nucl-th/9803035.[394] Stephanov, M.A., On the sign of kurtosis near the QCD critical point. Phys. Rev. Lett., 107, 2011, 052301, 10.1103/PhysRevLett.107.052301 arXiv:1104.1627.[395] Adam, J., et al. Flow and interferometry results from Au+Au collisions at s

NN

=4.5 GeV. Phys. Rev. C, 103(3), 2021, 034908, 10.1103/PhysRevC.103.034908 arXiv:2007.14005.[396] Adamczyk, L., et al. Beam energy dependence of jet-quenching effects in Au+Au collisions at s

NN

= 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. Phys. Rev. Lett., 121(3), 2018, 032301, 10.1103/PhysRevLett.121.032301 arXiv:1707.01988.[397] Adamczyk, L., et al. Observation of an energy-dependent difference in elliptic flow between particles and antiparticles in relativistic heavy ion collisions. Phys. Rev. Lett., 110(14), 2013, 142301, 10.1103/PhysRevLett.110.142301 arXiv:1301.2347.[398] Adam, J., et al. Nonmonotonic energy dependence of net-proton number fluctuations. Phys. Rev. Lett., 126(9), 2021, 092301, 10.1103/PhysRevLett.126.092301 arXiv:2001.02852.[399] Abdallah, Mohamed, et al. Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at s

NN

= 27, 54.4, and 200 GeV at RHIC. Phys. Rev. Lett., 127(26), 2021, 262301, 10.1103/PhysRevLett.127.262301 arXiv:2105.14698.[400] Beam energy dependence of fifth and sixth-order net-proton number fluctuations in Au+Au collisions at RHIC. arXiv:2207.09837, 7 2022.[401] Vovchenko, Volodymyr, Koch, Volker, Shen, Chun, Proton number cumulants and correlation functions in Au-Au collisions at sNN=7.7–200 GeV from hydrodynamics. Phys. Rev. C, 105(1), 2022, 014904, 10.1103/PhysRevC.105.014904 arXiv:2107.00163.[402] Abdallah, M.S., et al. Disappearance of partonic collectivity in sNN=3 GeV Au+Au collisions at RHIC. Phys. Lett. B, 827, 2022, 137003, 10.1016/j.physletb.2022.137003 arXiv:2108.00908.[403] Abdallah, M.S., et al. Probing strangeness canonical ensemble with K−, ϕ(1020) and Ξ− production in Au+Au collisions at sNN=3 GeV. Phys. Lett. B, 831, 2022, 137152, 10.1016/j.physletb.2022.137152 arXiv:2108.00924.[404] Kharzeev, Dmitri, Pisarski, Robert D., Pionic measures of parity and CP violation in high-energy nuclear collisions. Phys. Rev. D, 61, 2000, 111901, 10.1103/PhysRevD.61.111901 arXiv:hep-ph/9906401.[405] Kharzeev, Dmitri, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633 (2006), 260–264, 10.1016/j.physletb.2005.11.075 arXiv:hep-ph/0406125.[406] Gursoy, Umut, Kharzeev, Dmitri, Rajagopal, Krishna, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C, 89(5), 2014, 054905, 10.1103/PhysRevC.89.054905 arXiv:1401.3805.[407] Das, Santosh K., Plumari, Salvatore, Chatterjee, Sandeep, Alam, Jane, Scardina, Francesco, Greco, Vincenzo, Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions. Phys. Lett. B 768 (2017), 260–264, 10.1016/j.physletb.2017.02.046 arXiv:1608.02231.[408] Gürsoy, Umut, Kharzeev, Dmitri, Marcus, Eric, Rajagopal, Krishna, Shen, Chun, Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions. Phys. Rev. C, 98(5), 2018, 055201, 10.1103/PhysRevC.98.055201 arXiv:1806.05288.[409] Sun, Yifeng, Plumari, Salvatore, Greco, Vincenzo, Probing the electromagnetic fields in ultrarelativistic collisions with leptons from Z0 decay and charmed mesons. Phys. Lett. B, 816, 2021, 136271, 10.1016/j.physletb.2021.136271 arXiv:2004.09880.[410] Oliva, Lucia, Plumari, Salvatore, Greco, Vincenzo, Directed flow of D mesons at RHIC and LHC: non-perturbative dynamics, longitudinal bulk matter asymmetry and electromagnetic fields. J. High Energy Phys., 05, 2021, 034, 10.1007/JHEP05(2021)034 arXiv:2009.11066.[411] Feng, Yicheng, Estimate of a nonflow baseline for the chiral magnetic effect in isobar collisions at RHIC. 20th International Conference on Strangeness in Quark Matter 2022, 9 2022 arXiv:2209.13078.[412] Voloshin, Sergei A., Parity violation in hot QCD: how to detect it. Phys. Rev. C, 70, 2004, 057901, 10.1103/PhysRevC.70.057901 arXiv:hep-ph/0406311.[413] Abelev, B.I., et al. Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett., 103, 2009, 251601, 10.1103/PhysRevLett.103.251601 arXiv:0909.1739.[414] Wang, Fuqiang, Effects of cluster particle correlations on local parity violation observables. Phys. Rev. C, 81, 2010, 064902, 10.1103/PhysRevC.81.064902 arXiv:0911.1482.[415] Bzdak, Adam, Koch, Volker, Liao, Jinfeng, Remarks on possible local parity violation in heavy ion collisions. Phys. Rev. C, 81, 2010, 031901, 10.1103/PhysRevC.81.031901 arXiv:0912.5050.[416] Bzdak, Adam, Koch, Volker, Liao, Jinfeng, Azimuthal correlations from transverse momentum conservation and possible local parity violation. Phys. Rev. C, 83, 2011, 014905, 10.1103/PhysRevC.83.014905 arXiv:1008.4919.[417] Schlichting, Soren, Pratt, Scott, Charge conservation at energies available at the BNL relativistic heavy ion collider and contributions to local parity violation observables. Phys. Rev. C, 83, 2011, 014913, 10.1103/PhysRevC.83.014913 arXiv:1009.4283.[418] Pratt, Scott, Schlichting, Soeren, Gavin, Sean, Effects of momentum conservation and flow on angular correlations at RHIC. Phys. Rev. C, 84, 2011, 024909, 10.1103/PhysRevC.84.024909 arXiv:1011.6053.[419] Abelev, B.I., et al. Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C, 81, 2010, 054908, 10.1103/PhysRevC.81.054908 arXiv:0909.1717.[420] Abelev, Betty, et al. Charge separation relative to the reaction plane in Pb-Pb collisions at s

NN

=2.76 TeV. Phys. Rev. Lett., 110(1), 2013, 012301, 10.1103/PhysRevLett.110.012301 arXiv:1207.0900.[421] Adamczyk, L., et al. Fluctuations of charge separation perpendicular to the event plane and local parity violation in s

NN

=200 GeV Au+Au collisions at the BNL relativistic heavy ion collider. Phys. Rev. C, 88(6), 2013, 064911, 10.1103/PhysRevC.88.064911 arXiv:1302.3802.[422] Adamczyk, L., et al. Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at s

NN

= 200 GeV. Phys. Rev. C, 89(4), 2014, 044908, 10.1103/PhysRevC.89.044908 arXiv:1303.0901.[423] Adamczyk, L., et al. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC. Phys. Rev. Lett., 113, 2014, 052302, 10.1103/PhysRevLett.113.052302 arXiv:1404.1433.[424] Adam, Jaroslav, et al. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at s

NN

= 2.76 TeV. Phys. Rev. C, 93(4), 2016, 044903, 10.1103/PhysRevC.93.044903 arXiv:1512.05739.[425] Khachatryan, Vardan, et al. Observation of charge-dependent azimuthal correlations in p-Pb collisions and its implication for the search for the chiral magnetic effect. Phys. Rev. Lett., 118(12), 2017, 122301, 10.1103/PhysRevLett.118.122301 arXiv:1610.00263.[426] Acharya, Shreyasi, et al. Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb-Pb collisions at s

NN

= 2.76 TeV. Phys. Lett. B 777 (2018), 151–162, 10.1016/j.physletb.2017.12.021 arXiv:1709.04723.[427] Sirunyan, Albert M., et al. Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider. Phys. Rev. C, 97(4), 2018, 044912, 10.1103/PhysRevC.97.044912 arXiv:1708.01602.[428] Adam, J., et al. Charge-dependent pair correlations relative to a third particle in p + Au and d+ Au collisions at RHIC. Phys. Lett. B, 798, 2019, 134975, 10.1016/j.physletb.2019.134975 arXiv:1906.03373.[429] Abdallah, M.S., et al. Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au + Au collisions at sNN=200 GeV. Phys. Rev. C, 106(3), 2022, 034908, 10.1103/PhysRevC.106.034908 arXiv:2006.05035.[430] Abdallah, M.S., et al. Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. Lett., 128(9), 2022, 092301, 10.1103/PhysRevLett.128.092301 arXiv:2106.09243.[431] Acharya, Shreyasi, et al. Constraining the chiral magnetic effect with charge-dependent azimuthal correlations in Pb-Pb collisions at s

NN

= 2.76 and 5.02 TeV. J. High Energy Phys., 09, 2020, 160, 10.1007/JHEP09(2020)160 arXiv:2005.14640.[432] Search for the chiral magnetic effect with charge-dependent azimuthal correlations in Xe-Xe collisions at s

NN

=5.44 TeV. arXiv:2210.15383, 10 2022.[433] Liang, Zuo-Tang, Wang, Xin-Nian, Globally polarized quark-gluon plasma in non-central A+A collisions. Phys. Rev. Lett., 94, 2005, 102301, 10.1103/PhysRevLett.94.102301 Phys. Rev. Lett., 96, 2006, 039901 (Erratum) arXiv:nucl-th/0410079.[434] Becattini, F., Piccinini, F., Rizzo, J., Angular momentum conservation in heavy ion collisions at very high energy. Phys. Rev. C, 77, 2008, 024906, 10.1103/PhysRevC.77.024906 arXiv:0711.1253.[435] Adamczyk, L., et al. Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548 (2017), 62–65, 10.1038/nature23004 arXiv:1701.06657.[436] Becattini, F., Karpenko, I., Lisa, M., Upsal, I., Voloshin, S., Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down. Phys. Rev. C, 95(5), 2017, 054902, 10.1103/PhysRevC.95.054902 arXiv:1610.02506.[437] Adam, J., et al. Global polarization of Ξ and Ω hyperons in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. Lett., 126(16), 2021, 162301, 10.1103/PhysRevLett.126.162301 arXiv:2012.13601.[438] Abdallah, M.S., et al. Global Λ-hyperon polarization in Au+Au collisions at s

NN

=3 GeV. Phys. Rev. C, 104(6), 2021, L061901, 10.1103/PhysRevC.104.L061901 arXiv:2108.00044.[439] Abelev, B.I., et al. Global polarization measurement in Au+Au collisions. Phys. Rev. C, 76, 2007, 024915, 10.1103/PhysRevC.76.024915 Phys. Rev. C, 95, 2017, 039906 (Erratum) arXiv:0705.1691.[440] Adam, Jaroslav, et al. Global polarization of Λ hyperons in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. C, 98, 2018, 014910, 10.1103/PhysRevC.98.014910 arXiv:1805.04400.[441] Acharya, Shreyasi, et al. Global polarization of ΛΛ¯ hyperons in Pb-Pb collisions at s

NN

= 2.76 and 5.02 TeV. Phys. Rev. C, 101(4), 2020, 044611, 10.1103/PhysRevC.101.044611 Phys. Rev. C, 105, 2022, 029902 (Erratum) arXiv:1909.01281.[442] Yassine, R. Abou, et al. Measurement of global polarization of Λ hyperons in few-GeV heavy-ion collisions. Phys. Lett. B, 835, 2022, 137506, 10.1016/j.physletb.2022.137506 arXiv:2207.05160.[443] Becattini, Francesco, Lisa, Michael A., Polarization and vorticity in the quark–gluon plasma. Annu. Rev. Nucl. Part. Sci. 70 (2020), 395–423, 10.1146/annurev-nucl-021920-095245 arXiv:2003.03640.[444] Zyla, P.A., et al. Review of particle physics. PTEP, 2020(8), 2020, 083C01, 10.1093/ptep/ptaa104.[445] Karpenko, I., Becattini, F., Study of Λ polarization in relativistic nuclear collisions at s

NN

=7.7 –200 GeV. Eur. Phys. J. C, 77(4), 2017, 213, 10.1140/epjc/s10052-017-4765-1 arXiv:1610.04717.[446] Sun, Yifeng, Ko, Che Ming, Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach. Phys. Rev. C, 96(2), 2017, 024906, 10.1103/PhysRevC.96.024906 arXiv:1706.09467.[447] Guo, Yu, Liao, Jinfeng, Wang, Enke, Xing, Hongxi, Zhang, Hui, Hyperon polarization from the vortical fluid in low-energy nuclear collisions. Phys. Rev. C, 104(4), 2021, L041902, 10.1103/PhysRevC.104.L041902 arXiv:2105.13481.[448] Ivanov, Yu B., Global Λ polarization in moderately relativistic nuclear collisions. Phys. Rev. C, 103(3), 2021, L031903, 10.1103/PhysRevC.103.L031903 arXiv:2012.07597.[449] Adams, Joseph, et al. The STAR event plane detector. Nucl. Instrum. Methods A, 968, 2020, 163970, 10.1016/j.nima.2020.163970 arXiv:1912.05243.[450] Müller, Berndt, Schäfer, Andreas, Chiral magnetic effect and an experimental bound on the late time magnetic field strength. Phys. Rev. D, 98(7), 2018, 071902, 10.1103/PhysRevD.98.071902 arXiv:1806.10907.[451] Becattini, F., Karpenko, Iu., Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy. Phys. Rev. Lett., 120(1), 2018, 012302, 10.1103/PhysRevLett.120.012302 arXiv:1707.07984.[452] Voloshin, Sergei A., Vorticity and particle polarization in heavy ion collisions (experimental perspective). EPJ Web Conf., 171, 2018, 07002, 10.1051/epjconf/201817107002 arXiv:1710.08934.[453] Adam, Jaroslav, et al. Polarization of Λ (Λ¯) hyperons along the beam direction in Au+Au collisions at s

NN

= 200 GeV. Phys. Rev. Lett., 123(13), 2019, 132301, 10.1103/PhysRevLett.123.132301 arXiv:1905.11917.[454] Acharya, Shreyasi, et al. Polarization of Λ and Λ¯ hyperons along the beam direction in Pb-Pb collisions at s

NN

=5.02 TeV. Phys. Rev. Lett., 128(17), 2022, 172005, 10.1103/PhysRevLett.128.172005 arXiv:2107.11183.[455] Becattini, F., Buzzegoli, M., Inghirami, G., Karpenko, I., Palermo, A., Local polarization and isothermal local equilibrium in relativistic heavy ion collisions. Phys. Rev. Lett., 127(27), 2021, 272302, 10.1103/PhysRevLett.127.272302 arXiv:2103.14621.[456] Liu, Shuai Y.F., Yin, Yi, Spin polarization induced by the hydrodynamic gradients. J. High Energy Phys., 07, 2021, 188, 10.1007/JHEP07(2021)188 arXiv:2103.09200.[457] Fu, Baochi, Liu, Shuai Y.F., Pang, Longgang, Song, Huichao, Yin, Yi, Shear-induced spin polarization in heavy-ion collisions. Phys. Rev. Lett., 127(14), 2021, 142301, 10.1103/PhysRevLett.127.142301 arXiv:2103.10403.[458] Alzhrani, Sahr, Ryu, Sangwook, Shen, Chun, Λ spin polarization in event-by-event relativistic heavy-ion collisions. Phys. Rev. C, 106(1), 2022, 014905, 10.1103/PhysRevC.106.014905 arXiv:2203.15718.[459] Pohl, Randolf, et al. The size of the proton. Nature 466 (2010), 213–216, 10.1038/nature09250.[460] Xiong, W., et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575:7781 (2019), 147–150, 10.1038/s41586-019-1721-2.[461] Gao, Haiyan, Vanderhaeghen, Marc, The proton charge radius. Rev. Mod. Phys., 94(1), 2022, 015002, 10.1103/RevModPhys.94.015002 arXiv:2105.00571.[462] Christy, M.E., et al. Form factors and two-photon exchange in high-energy elastic electron-proton scattering. Phys. Rev. Lett., 128(10), 2022, 102002, 10.1103/PhysRevLett.128.102002 arXiv:2103.01842.[463] Henderson, B.S., et al. Hard two-photon contribution to elastic lepton-proton scattering: determined by the OLYMPUS experiment. Phys. Rev. Lett., 118(9), 2017, 092501, 10.1103/PhysRevLett.118.092501 arXiv:1611.04685.[464] Rimal, D., et al. Measurement of two-photon exchange effect by comparing elastic e±p cross sections. Phys. Rev. C, 95(6), 2017, 065201, 10.1103/PhysRevC.95.065201 arXiv:1603.00315.[465] Rachek, I.A., et al. Measurement of the two-photon exchange contribution to the elastic e±p scattering cross sections at the VEPP-3 storage ring. Phys. Rev. Lett., 114(6), 2015, 062005, 10.1103/PhysRevLett.114.062005 arXiv:1411.7372.[466] Jones, M.K., et al. G(E(p)) / G(M(p)) ratio by polarization transfer in polarized e p —> e polarized p. Phys. Rev. Lett. 84 (2000), 1398–1402, 10.1103/PhysRevLett.84.1398 arXiv:nucl-ex/9910005.[467] Gayou, O., et al. Measurement of G(Ep) / G(Mp) in polarized-e p —> e polarized-p to Q**2 = 5.6-GeV**2. Phys. Rev. Lett., 88, 2002, 092301, 10.1103/PhysRevLett.88.092301 arXiv:nucl-ex/0111010.[468] Adikaram, D., et al. Towards a resolution of the proton form factor problem: new electron and positron scattering data. Phys. Rev. Lett., 114, 2015, 062003, 10.1103/PhysRevLett.114.062003 arXiv:1411.6908.[469] Drechsel, D., Pasquini, B., Vanderhaeghen, M., Dispersion relations in real and virtual Compton scattering. Phys. Rep. 378 (2003), 99–205, 10.1016/S0370-1573(02)00636-1 arXiv:hep-ph/0212124.[470] Pasquini, Barbara, Vanderhaeghen, Marc, Dispersion theory in electromagnetic interactions. Annu. Rev. Nucl. Part. Sci. 68 (2018), 75–103, 10.1146/annurev-nucl-101917-020843 arXiv:1805.10482.[471] Griesshammer, H.W., McGovern, J.A., Phillips, D.R., Feldman, G., Using effective field theory to analyse low-energy Compton scattering data from protons and light nuclei. Prog. Part. Nucl. Phys. 67 (2012), 841–897, 10.1016/j.ppnp.2012.04.003 arXiv:1203.6834.[472] Howell, C.R., et al. International workshop on next generation gamma-ray source. J. Phys. G, 49(1), 2022, 010502, 10.1088/1361-6471/ac2827 arXiv:2012.10843.[473] Hagelstein, Franziska, Miskimen, Rory, Pascalutsa, Vladimir, Nucleon polarizabilities: from Compton scattering to hydrogen atom. Prog. Part. Nucl. Phys. 88 (2016), 29–97, 10.1016/j.ppnp.2015.12.001 arXiv:1512.03765.[474] Mornacchi, E., Rodini, S., Pasquini, B., Pedroni, P., First concurrent extraction of the leading-order scalar and spin proton polarizabilities. Phys. Rev. Lett., 129(10), 2022, 102501, 10.1103/PhysRevLett.129.102501 arXiv:2204.13491.[475] Pasquini, B., Pedroni, P., Sconfietti, S., First extraction of the scalar proton dynamical polarizabilities from real Compton scattering data. Phys. Rev. C, 98(1), 2018, 015204, 10.1103/PhysRevC.98.015204 arXiv:1711.07401.[476] Pasquini, B., Pedroni, P., Sconfietti, S., Proton scalar dipole polarizabilities from real Compton scattering data, using fixed-t subtracted dispersion relations and the bootstrap method. J. Phys. G, 46(10), 2019, 104001, 10.1088/1361-6471/ab323a arXiv:1903.07952.[477] Margaryan, Arman, Strandberg, Bruno, Griesshammer, Harald W., Mcgovern, Judith A., Phillips, Daniel R., Shukla, Deepshikha, Elastic Compton scattering from3He and the role of the Delta. Eur. Phys. J. A, 54(7), 2018, 125, 10.1140/epja/i2018-12554-x arXiv:1804.00956.[478] Martel, P.P., et al. Measurements of double-polarized Compton scattering asymmetries and extraction of the proton spin polarizabilities. Phys. Rev. Lett., 114(11), 2015, 112501, 10.1103/PhysRevLett.114.112501 arXiv:1408.1576.[479] Paudyal, D., et al. Extracting the spin polarizabilities of the proton by measurement of Compton double-polarization observables. Phys. Rev. C, 102(3), 2020, 035205, 10.1103/PhysRevC.102.035205 arXiv:1909.02032.[480] Mornacchi, E., et al. Measurement of Compton scattering at MAMI for the extraction of the electric and magnetic polarizabilities of the proton. Phys. Rev. Lett., 128(13), 2022, 132503, 10.1103/PhysRevLett.128.132503 arXiv:2110.15691.[481] Li, X., et al. Proton Compton scattering from linearly polarized gamma rays. Phys. Rev. Lett., 128, 2022, 132502, 10.1103/PhysRevLett.128.132502 arXiv:2205.10533.[482] Li, X., et al. Compton scattering from 4He at the TUNL HIγS facility. Phys. Rev. C, 101(3), 2020, 034618, 10.1103/PhysRevC.101.034618 arXiv:1912.06915.[483] Sikora, M.H., et al. Compton scattering from 4He at 61 MeV. Phys. Rev. C, 96(5), 2017, 055209, 10.1103/PhysRevC.96.055209.[484] Fonvieille, H., Pasquini, B., Sparveris, N., Virtual Compton scattering and nucleon generalized polarizabilities. Prog. Part. Nucl. Phys., 113, 2020, 103754, 10.1016/j.ppnp.2020.103754 arXiv:1910.11071.[485] Roche, J., et al. The first determination of generalized polarizabilities of the proton by a virtual Compton scattering experiment. Phys. Rev. Lett., 85, 2000, 708, 10.1103/PhysRevLett.85.708 arXiv:hep-ex/0007053.[486] Janssens, P., et al. A new measurement of the structure functions P(LL) - P(TT)/ epsilon and P(LT) in virtual Compton scattering at Q**2 = 0.33 (GeV/c)**2. Eur. Phys. J. A, 37, 2008, 1, 10.1140/epja/i2008-10609-3 arXiv:0803.0911.[487] Beričič, J., et al. New insight in the Q2-dependence of proton generalized polarizabilities. Phys. Rev. Lett., 123(19), 2019, 192302, 10.1103/PhysRevLett.123.192302 arXiv:1907.09954.[488] Fonvieille, H., et al. Measurement of the generalized polarizabilities of the proton at intermediate Q2. Phys. Rev. C, 103(2), 2021, 025205, 10.1103/PhysRevC.103.025205 arXiv:2008.08958.[489] Blomberg, A., et al. Virtual Compton scattering measurements in the nucleon resonance region. Eur. Phys. J. A, 55(10), 2019, 182, 10.1140/epja/i2019-12877-0 arXiv:1901.08951.[490] Li, R., et al. Measured proton electromagnetic structure deviates from theoretical predictions. Nature 611:7935 (2022), 265–270, 10.1038/s41586-022-05248-1 arXiv:2210.11461.[491] Laveissiere, G., et al. Measurement of the generalized polarizabilities of the proton in virtual Compton scattering at Q**2 = 0.92-GeV**2 and 1.76-GeV**2. Phys. Rev. Lett., 93, 2004, 122001, 10.1103/PhysRevLett.93.122001 arXiv:hep-ph/0404243.[492] Fonvieille, H., et al. Virtual Compton scattering and the generalized polarizabilities of the proton at Q2=0.92 and 1.76 GeV2. Phys. Rev. C, 86, 2012, 015210, 10.1103/PhysRevC.86.015210 arXiv:1205.3387.[493] Bourgeois, P., et al. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q**2 using the VCS reaction. Phys. Rev. Lett., 97, 2006, 212001, 10.1103/PhysRevLett.97.212001 arXiv:nucl-ex/0605009.[494] Bourgeois, P., et al. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q-2 using the virtual Compton scattering reaction. Phys. Rev. C, 84, 2011, 035206, 10.1103/PhysRevC.84.035206.[495] Lensky, Vadim, Pascalutsa, Vladimir, Vanderhaeghen, Marc, Generalized polarizabilities of the nucleon in baryon chiral perturbation theory. Eur. Phys. J. C, 77(2), 2017, 119, 10.1140/epjc/s10052-017-4652-9 arXiv:1612.08626.[496] Pasquini, B., Scherer, S., Drechsel, D., Generalized polarizabilities of the proton in a constituent quark model revisited. Phys. Rev. C, 63, 2001, 025205, 10.1103/PhysRevC.63.025205 arXiv:nucl-th/0008046.[497] Metz, A., Drechsel, D., Generalized polarizabilities of the nucleon studied in the linear sigma model. Z. Phys. A 356 (1996), 351–357, 10.1007/s002180050188.[498] Korchin, A.Yu., Scholten, O., Nucleon polarizabilities in virtual Compton scattering. Phys. Rev. C 58 (1998), 1098–1100, 10.1103/PhysRevC.58.1098.[499] Pasquini, B., Drechsel, D., Gorchtein, M., Metz, A., Vanderhaeghen, M., Dispersion relation formalism for virtual Compton scattering and the generalized polarizabilities of the nucleon. Phys. Rev. C, 62, 2000, 052201, 10.1103/PhysRevC.62.052201 arXiv:hep-ph/0007144.[500] Pasquini, B., Gorchtein, M., Drechsel, D., Metz, A., Vanderhaeghen, M., Dispersion relation formalism for virtual Compton scattering off the proton. Eur. Phys. J. A 11 (2001), 185–208, 10.1007/s100500170084 arXiv:hep-ph/0102335.[501] Sulkosky, Vincent, et al. Measurement of the generalized spin polarizabilities of the neutron in the low-Q2 region. Nat. Phys. 17:6 (2021), 687–692, 10.1038/s41567-021-01245-9 Nat. Phys., 18, 2022 (Erratum) arXiv:2103.03333.[502] Amarian, M., et al. Measurement of the generalized forward spin polarizabilities of the neutron. Phys. Rev. Lett., 93, 2004, 152301, 10.1103/PhysRevLett.93.152301 arXiv:nucl-ex/0406005.[503] Bernard, Veronique, Hemmert, Thomas R., Meissner, Ulf-G., Spin structure of the nucleon at low-energies. Phys. Rev. D, 67, 2003, 076008, 10.1103/PhysRevD.67.076008 arXiv:hep-ph/0212033.[504] Kao, Chung Wen, Spitzenberg, Thomas, Vanderhaeghen, Marc, Burkhardt-Cottingham sum rule and forward spin polarizabilities in heavy baryon chiral perturbation theory. Phys. Rev. D, 67, 2003, 016001, 10.1103/PhysRevD.67.016001 arXiv:hep-ph/0209241.[505] Bernard, Veronique, Epelbaum, Evgeny, Krebs, Hermann, Meissner, Ulf-G., New insights into the spin structure of the nucleon. Phys. Rev. D, 87(5), 2013, 054032, 10.1103/PhysRevD.87.054032 arXiv:1209.2523.[506] Alarcón, Jose Manuel, Hagelstein, Franziska, Lensky, Vadim, Pascalutsa, Vladimir, Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: II. Spin polarizabilities and moments of polarized structure functions. Phys. Rev. D, 102(11), 2020, 114026, 10.1103/PhysRevD.102.114026 arXiv:2006.08626.[507] Drechsel, D., Hanstein, O., Kamalov, S.S., Tiator, L., A unitary isobar model for pion photoproduction and electroproduction on the proton up to 1-GeV. Nucl. Phys. A 645 (1999), 145–174, 10.1016/S0375-9474(98)00572-7 arXiv:nucl-th/9807001.[508] Zheng, X., et al. Measurement of the proton spin structure at long distances. Nat. Phys. 17:6 (2021), 736–741, 10.1038/s41567-021-01198-z arXiv:2102.02658.[509] Adhikari, K.P., et al. Measurement of the Q2 dependence of the deuteron spin structure function g

1

and its moments at low Q2 with CLAS. Phys. Rev. Lett., 120(6), 2018, 062501, 10.1103/PhysRevLett.120.062501 arXiv:1711.01974.[510] Ruth, D., et al. Proton spin structure and generalized polarizabilities in the strong quantum chromodynamics regime. Nat. Phys. 18:12 (2022), 1441–1446, 10.1038/s41567-022-01781-y arXiv:2204.10224.[511] Larin, I., et al. Precision measurement of the neutral pion lifetime. Science 368:6490 (2020), 506–509, 10.1126/science.aay6641.[512] Hou, Tie-Jiun, et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D, 103(1), 2021, 014013, 10.1103/PhysRevD.103.014013 arXiv:1912.10053.[513] Ball, Richard D., et al. Parton distributions from high-precision collider data. Eur. Phys. J. C, 77(10), 2017, 663, 10.1140/epjc/s10052-017-5199-5 arXiv:1706.00428.[514] Alekhin, S., Blümlein, J., Moch, S., Placakyte, R., Parton distribution functions, α

s

, and heavy-quark masses for LHC Run II. Phys. Rev. D, 96(1), 2017, 014011, 10.1103/PhysRevD.96.014011 arXiv:1701.05838.[515] Cocuzza, C., Keppel, C.E., Liu, H., Melnitchouk, W., Metz, A., Sato, N., Thomas, A.W., Isovector EMC effect from global QCD analysis with MARATHON data. Phys. Rev. Lett., 127(24), 2021, 242001, 10.1103/PhysRevLett.127.242001 arXiv:2104.06946.[516] Abrams, D., et al. Measurement of the nucleon F

2

n/F

2

p structure function ratio by the Jefferson Lab MARATHON tritium/helium-3 deep inelastic scattering experiment. Phys. Rev. Lett., 128(13), 2022, 132003, 10.1103/PhysRevLett.128.132003 arXiv:2104.05850.[517] Dove, J., et al. The asymmetry of antimatter in the proton. Nature 590:7847 (2021), 561–565, 10.1038/s41586-022-04707-z Nature, 604, 2022, E26 (Erratum) arXiv:2103.04024.[518] Towell, R.S., et al. Improved measurement of the anti-d / anti-u asymmetry in the nucleon sea. Phys. Rev. D, 64, 2001, 052002, 10.1103/PhysRevD.64.052002 arXiv:hep-ex/0103030.[519] Cui, Zhu-Fang, Gao, Fei, Binosi, Daniele, Chang, Lei, Roberts, Craig D., Schmidt, Sebastian M., Valence quark ratio in the proton. Chin. Phys. Lett., 39(4), 2022, 041401, 10.1088/0256-307X/39/4/041401 arXiv:2108.11493.[520] Alekhin, S.I., Kulagin, S.A., Petti, R., Nuclear effects in the deuteron and global QCD analyses. Phys. Rev. D, 105(11), 2022, 114037, 10.1103/PhysRevD.105.114037 arXiv:2203.07333.[521] Kuhn (contact), S., Bueltmann, S., Christy, M., Griffioen, K., Hattawy, M., Keppel, C., Melnitchouk, W., et al. The Structure of the Free Neutron at Large x-Bjorken. Jefferson Lab Experiment E12-06-113 https://www.jlab.org/exp_prog/12GEV_EXP/E1206113.html, 2006.[522] Adam, Jaroslav, et al. Measurements of W and Z/γ cross sections and their ratios in p+p collisions at RHIC. Phys. Rev. D, 103(1), 2021, 012001, 10.1103/PhysRevD.103.012001 arXiv:2011.04708.[523] De Florian, Daniel, Lucero, Gonzalo Agustín, Sassot, Rodolfo, Stratmann, Marco, Vogelsang, Werner, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities. Phys. Rev. D, 100(11), 2019, 114027, 10.1103/PhysRevD.100.114027 arXiv:1902.10548.[524] Nocera, Emanuele R., Ball, Richard D., Forte, Stefano, Ridolfi, Giovanni, Rojo, Juan, A first unbiased global determination of polarized PDFs and their uncertainties. Nucl. Phys. B 887 (2014), 276–308, 10.1016/j.nuclphysb.2014.08.008 arXiv:1406.5539.[525] Cocuzza, C., Melnitchouk, W., Metz, A., Sato, N., Polarized antimatter in the proton from a global QCD analysis. Phys. Rev. D, 106(3), 2022, L031502, 10.1103/PhysRevD.106.L031502 arXiv:2202.03372.[526] Aschenauer, Elke-Caroline, et al. The RHIC Cold QCD Program. arXiv:2302.00605, 02 2023.[527] de Florian, Daniel, Sassot, Rodolfo, Stratmann, Marco, Vogelsang, Werner, Evidence for polarization of gluons in the proton. Phys. Rev. Lett., 113(1), 2014, 012001, 10.1103/PhysRevLett.113.012001 arXiv:1404.4293.[528] Adam, Jaroslav, et al. Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at s = 510 GeV. Phys. Rev. D, 99(5), 2019, 051102, 10.1103/PhysRevD.99.051102 arXiv:1812.04817.[529] Adamczyk, L., et al. Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at s=200 GeV. Phys. Rev. Lett., 115(9), 2015, 092002, 10.1103/PhysRevLett.115.092002 arXiv:1405.5134.[530] Adam, J., et al. Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at s=510 GeV. Phys. Rev. D, 100(5), 2019, 052005, 10.1103/PhysRevD.100.052005 arXiv:1906.02740.[531] Abdallah, M.S., et al. Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at s=200 GeV. Phys. Rev. D, 103(9), 2021, L091103, 10.1103/PhysRevD.103.L091103 arXiv:2103.05571.[532] Abdallah, M.S., et al. Longitudinal double-spin asymmetry for inclusive jet and dijet production in polarized proton collisions at s=510 GeV. Phys. Rev. D, 105(9), 2022, 092011, 10.1103/PhysRevD.105.092011 arXiv:2110.11020.[533] Adare, A., et al. Measurement of parity-violating spin asymmetries in W± production at midrapidity in longitudinally polarized p+p collisions. Phys. Rev. D, 93(5), 2016, 051103, 10.1103/PhysRevD.93.051103 arXiv:1504.07451.[534] Adare, A., et al. Cross section and longitudinal single-spin asymmetry A

L

for forward W±→μ±ν production in polarized p+p collisions at s=510 GeV. Phys. Rev. D, 98(3), 2018, 032007, 10.1103/PhysRevD.98.032007 arXiv:1804.04181.[535] Bjorken, J.D., Applications of the chiral U(6) x (6) algebra of current densities. Phys. Rev. 148 (1966), 1467–1478, 10.1103/PhysRev.148.1467.[536] Deur, Alexandre, Brodsky, Stanley J., De Téramond, Guy F., The spin structure of the nucleon. https://doi.org/10.1088/1361-6633/ab0b8f arXiv:1807.05250, 7 2018.[537] Deur, A., et al. Experimental study of the behavior of the Bjorken sum at very low Q2. Phys. Lett. B, 825, 2022, 136878, 10.1016/j.physletb.2022.136878 arXiv:2107.08133.[538] Deur, Alexandre, Brodsky, Stanley J., de Teramond, Guy F., The QCD running coupling. Nucl. Phys., 90, 2016, 1, 10.1016/j.ppnp.2016.04.003 arXiv:1604.08082.[539] Deur, A., Prok, Y., Burkert, V., Crabb, D., Girod, F.X., Griffioen, K.A., Guler, N., Kuhn, S.E., Kvaltine, N., High precision determination of the Q2 evolution of the Bjorken sum. Phys. Rev. D, 90(1), 2014, 012009, 10.1103/PhysRevD.90.012009 arXiv:1405.7854.[540] d'Enterria, D., et al. The strong coupling constant: state of the art and the decade ahead. arXiv:2203.08271, 3 2022.[541] Zheng, X., et al. Precision measurement of the neutron spin asymmetry A1**N and spin flavor decomposition in the valence quark region. Phys. Rev. Lett., 92, 2004, 012004, 10.1103/PhysRevLett.92.012004 arXiv:nucl-ex/0308011.[542] Zheng, X., et al. Precision measurement of the neutron spin asymmetries and spin-dependent structure functions in the valence quark region. Phys. Rev. C, 70, 2004, 065207, 10.1103/PhysRevC.70.065207 arXiv:nucl-ex/0405006.[543] Avakian, Harut, Brodsky, Stanley J., Deur, Alexandre, Yuan, Feng, Effect of orbital angular momentum on valence-quark helicity distributions. Phys. Rev. Lett., 99, 2007, 082001, 10.1103/PhysRevLett.99.082001 arXiv:0705.1553.[544] Burkert, V.D., Elouadrhiri, L., Girod, F.X., The pressure distribution inside the proton. Nature 557:7705 (2018), 396–399, 10.1038/s41586-018-0060-z.[545] Shanahan, P.E., Detmold, W., Pressure distribution and shear forces inside the proton. Phys. Rev. Lett., 122(7), 2019, 072003, 10.1103/PhysRevLett.122.072003 arXiv:1810.07589.[546] Ji, Xiang-Dong, Deeply virtual Compton scattering. Phys. Rev. D 55 (1997), 7114–7125, 10.1103/PhysRevD.55.7114 arXiv:hep-ph/9609381.[547] Dupré, Raphaël, Guidal, Michel, Niccolai, Silvia, Vanderhaeghen, Marc, Analysis of deeply virtual Compton scattering data at Jefferson Lab and proton tomography. Eur. Phys. J. A, 53(8), 2017, 171, 10.1140/epja/i2017-12356-8 arXiv:1704.07330.[548] Polyakov, M.V., Generalized parton distributions and strong forces inside nucleons and nuclei. Phys. Lett. B 555 (2003), 57–62, 10.1016/S0370-2693(03)00036-4 arXiv:hep-ph/0210165.[549] Polyakov, Maxim V., Schweitzer, Peter, Forces inside hadrons: pressure, surface tension, mechanical radius, and all that. Int. J. Mod. Phys. A, 33(26), 2018, 1830025, 10.1142/S0217751X18300259 arXiv:1805.06596.[550] Girod, F.X., et al. Measurement of deeply virtual Compton scattering beam-spin asymmetries. Phys. Rev. Lett., 100, 2008, 162002, 10.1103/PhysRevLett.100.162002 arXiv:0711.4805.[551] Pisano, S., et al. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target. Phys. Rev. D, 91(5), 2015, 052014, 10.1103/PhysRevD.91.052014 arXiv:1501.07052.[552] Shanahan, P.E., Detmold, W., Gluon gravitational form factors of the nucleon and the pion from lattice QCD. Phys. Rev. D, 99(1), 2019, 014511, 10.1103/PhysRevD.99.014511 arXiv:1810.04626.[553] Chatagnon, P., et al. First measurement of timelike Compton scattering. Phys. Rev. Lett., 127(26), 2021, 262501, 10.1103/PhysRevLett.127.262501 arXiv:2108.11746.[554] Aghasyan, M., et al. First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process. Phys. Rev. Lett., 119(11), 2017, 112002, 10.1103/PhysRevLett.119.112002 arXiv:1704.00488.[555] Adamczyk, L., et al. Measurement of the transverse single-spin asymmetry in p+p→W±/Z0 at RHIC. Phys. Rev. Lett., 116(13), 2016, 132301, 10.1103/PhysRevLett.116.132301 arXiv:1511.06003.[556] Cammarota, Justin, Gamberg, Leonard, Kang, Zhong-Bo, Miller, Joshua A., Pitonyak, Daniel, Prokudin, Alexei, Rogers, Ted C., Sato, Nobuo, Origin of single transverse-spin asymmetries in high-energy collisions. Phys. Rev. D, 102(5), 2020, 054002, 10.1103/PhysRevD.102.054002 arXiv:2002.08384.[557] Bury, Marcin, Prokudin, Alexei, Vladimirov, Alexey, Extraction of the Sivers function from SIDIS, Drell-Yan, and W±/Z data at next-to-next-to-next-to leading order. Phys. Rev. Lett., 126(11), 2021, 112002, 10.1103/PhysRevLett.126.112002 arXiv:2012.05135.[558] Bury, Marcin, Prokudin, Alexei, Vladimirov, Alexey, Extraction of the Sivers function from SIDIS, Drell-Yan, and W±/Z boson production data with TMD evolution. J. High Energy Phys., 05, 2021, 151, 10.1007/JHEP05(2021)151 arXiv:2103.03270.[559] Gamberg, Leonard, Malda, Michel, Miller, Joshua A., Pitonyak, Daniel, Prokudin, Alexei, Sato, Nobuo, Updated QCD global analysis of single transverse-spin asymmetries: extracting H~, and the role of the Soffer bound and lattice QCD. Phys. Rev. D, 106(3), 2022, 034014, 10.1103/PhysRevD.106.034014 arXiv:2205.00999.[560] Echevarria, Miguel G., Kang, Zhong-Bo, Terry, John, Global analysis of the Sivers functions at NLO+NNLL in QCD. J. High Energy Phys., 01, 2021, 126, 10.1007/JHEP01(2021)126 arXiv:2009.10710.[561] Bacchetta, Alessandro, Delcarro, Filippo, Pisano, Cristian, Radici, Marco, The 3-dimensional distribution of quarks in momentum space. Phys. Lett. B, 827, 2022, 136961, 10.1016/j.physletb.2022.136961 arXiv:2004.14278.[562] Diehl, S., et al. Multidimensional, high precision measurements of beam single spin asymmetries in semi-inclusive π+ electroproduction off protons in the Valence region. Phys. Rev. Lett., 128(6), 2022, 062005, 10.1103/PhysRevLett.128.062005 arXiv:2101.03544.[563] Diehl, S., et al. A multidimensional study of the structure function ratio σ

LT

0

from hard exclusive π+ electro-production off protons in the GPD regime. Phys. Lett. B, 839, 2023, 137761, 10.1016/j.physletb.2023.137761 arXiv:2210.14557.[564] Diehl, S., et al. Extraction of beam-spin asymmetries from the hard exclusive π+ channel off protons in a wide range of kinematics. Phys. Rev. Lett., 125(18), 2020, 182001, 10.1103/PhysRevLett.125.182001 arXiv:2007.15677.[565] Mirazita, M., et al. Beam spin asymmetry in semi-inclusive electroproduction of hadron pairs. Phys. Rev. Lett., 126(6), 2021, 062002, 10.1103/PhysRevLett.126.062002 arXiv:2010.09544.[566] Hayward, T.B., et al. Observation of beam spin asymmetries in the process ep→eπ+πX with CLAS12. Phys. Rev. Lett., 126, 2021, 152501, 10.1103/PhysRevLett.126.152501 arXiv:2101.04842.[567] Avakian, H., et al. Observation of correlations between spin and transverse momenta in back-to-back dihadron production at CLAS12. Phys. Rev. Lett., 130(2), 2023, 022501, 10.1103/PhysRevLett.130.022501 arXiv:2208.05086.[568] Abdallah, Mohamed, et al. Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized pp collisions at s = 200 GeV. Phys. Rev. D, 106(7), 2022, 072010, 10.1103/PhysRevD.106.072010 arXiv:2205.11800.[569] Kang, Zhong-Bo, Prokudin, Alexei, Ringer, Felix, Yuan, Feng, Collins azimuthal asymmetries of hadron production inside jets. Phys. Lett. B 774 (2017), 635–642, 10.1016/j.physletb.2017.10.031 arXiv:1707.00913.[570] D'Alesio, Umberto, Murgia, Francesco, Pisano, Cristian, Testing the universality of the Collins function in pion-jet production at RHIC. Phys. Lett. B 773 (2017), 300–306, 10.1016/j.physletb.2017.08.023 arXiv:1707.00914.[571] Yuan, Feng, Azimuthal asymmetric distribution of hadrons inside a jet at hadron collider. Phys. Rev. Lett., 100, 2008, 032003, 10.1103/PhysRevLett.100.032003 arXiv:0709.3272.[572] D'Alesio, Umberto, Murgia, Francesco, Pisano, Cristian, Azimuthal asymmetries for hadron distributions inside a jet in hadronic collisions. Phys. Rev. D, 83, 2011, 034021, 10.1103/PhysRevD.83.034021 arXiv:1011.2692.[573] Kang, Zhong-Bo, Liu, Xiaohui, Ringer, Felix, Xing, Hongxi, The transverse momentum distribution of hadrons within jets. J. High Energy Phys., 11, 2017, 068, 10.1007/JHEP11(2017)068 arXiv:1705.08443.[574] Adamczyk, L., et al. Observation of transverse spin-dependent azimuthal correlations of charged pion pairs in p+p at s=200 GeV. Phys. Rev. Lett., 115, 2015, 242501, 10.1103/PhysRevLett.115.242501 arXiv:1504.00415.[575] Adamczyk, L., et al. Transverse spin-dependent azimuthal correlations of charged pion pairs measured in p+p collisions at s = 500 GeV. Phys. Lett. B 780 (2018), 332–339, 10.1016/j.physletb.2018.02.069 arXiv:1710.10215.[576] Adam, Jaroslav, et al. Measurement of transverse single-spin asymmetries of π0 and electromagnetic jets at forward rapidity in 200 and 500 GeV transversely polarized proton-proton collisions. Phys. Rev. D, 103(9), 2021, 092009, 10.1103/PhysRevD.103.092009 arXiv:2012.11428.[577] Aidala, C., et al. Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized p+p, p+Al, and p+Au collisions at s

NN

=200 GeV. Phys. Rev. Lett., 123(12), 2019, 122001, 10.1103/PhysRevLett.123.122001 arXiv:1903.07422.[578] Adam, Jaroslav, et al. Comparison of transverse single-spin asymmetries for forward π0 production in polarized pp, pAl and pAu collisions at nucleon pair c.m. energy s

NN

=200 GeV. Phys. Rev. D, 103(7), 2021, 072005, 10.1103/PhysRevD.103.072005 arXiv:2012.07146.[579] Ali, A., et al. First measurement of near-threshold J/ψ exclusive photoproduction off the proton. Phys. Rev. Lett., 123(7), 2019, 072001, 10.1103/PhysRevLett.123.072001 arXiv:1905.10811.[580] Adhikari, S., et al. Measurement of the J/ψ photoproduction cross section over the full near-threshold kinematic region. Phys. Rev. C, 108(2), 2023, 025201, 10.1103/PhysRevC.108.025201 arXiv:2304.03845.[581] Pefkou, Dimitra A., Hackett, Daniel C., Shanahan, Phiala E., Gluon gravitational structure of hadrons of different spin. Phys. Rev. D, 105(5), 2022, 054509, 10.1103/PhysRevD.105.054509 arXiv:2107.10368.[582] Kharzeev, Dmitri E., Mass radius of the proton. Phys. Rev. D, 104(5), 2021, 054015, 10.1103/PhysRevD.104.054015 arXiv:2102.00110.[583] Guo, Yuxun, Ji, Xiangdong, Liu, Yizhuang, QCD analysis of near-threshold photon-proton production of heavy quarkonium. Phys. Rev. D, 103(9), 2021, 096010, 10.1103/PhysRevD.103.096010 arXiv:2103.11506.[584] Hatta, Yosh*taka, Strikman, Mark, Xu, Ji, Yuan, Feng, Sub-threshold J/ψ and ϒ production in γA collisions. Phys. Lett. B, 803, 2020, 135321, 10.1016/j.physletb.2020.135321 arXiv:1911.11706.[585] Mamo, Kiminad A., Zahed, Ismail, Diffractive photoproduction of J/ψ and ϒ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D, 101(8), 2020, 086003, 10.1103/PhysRevD.101.086003 arXiv:1910.04707.[586] Du, Meng-Lin, Baru, Vadim, Guo, Feng-Kun, Hanhart, Christoph, Meißner, Ulf-G., Nefediev, Alexey, Strakovsky, Igor, Deciphering the mechanism of near-threshold J/ψ photoproduction. Eur. Phys. J. C, 80(11), 2020, 1053, 10.1140/epjc/s10052-020-08620-5 arXiv:2009.08345.[587] Ji, Xiangdong, Liu, Yizhuang, Schäfer, Andreas, Scale symmetry breaking, quantum anomalous energy and proton mass decomposition. Nucl. Phys. B, 971, 2021, 115537, 10.1016/j.nuclphysb.2021.115537 arXiv:2105.03974.[588] Sun, Peng, Tong, Xuan-Bo, Yuan, Feng, Perturbative QCD analysis of near threshold heavy quarkonium photoproduction at large momentum transfer. Phys. Lett. B, 822, 2021, 136655, 10.1016/j.physletb.2021.136655 arXiv:2103.12047.[589] Ji, Xiangdong, Proton mass decomposition: naturalness and interpretations. Front. Phys. (Beijing), 16(6), 2021, 64601, 10.1007/s11467-021-1065-x arXiv:2102.07830.[590] Ji, Xiangdong, Liu, Yizhuang, Quantum anomalous energy effects on the nucleon mass. Sci. China, Phys. Mech. Astron., 64(8), 2021, 281012, 10.1007/s11433-021-1723-2 arXiv:2101.04483.[591] Lorcé, Cédric, Metz, Andreas, Pasquini, Barbara, Rodini, Simone, Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium. J. High Energy Phys., 11, 2021, 121, 10.1007/JHEP11(2021)121 arXiv:2109.11785.[592] Mamo, Kiminad A., Zahed, Ismail, Nucleon mass radii and distribution: holographic QCD, lattice QCD and GlueX data. Phys. Rev. D, 103(9), 2021, 094010, 10.1103/PhysRevD.103.094010 arXiv:2103.03186.[593] Wang, Rong, Kou, Wei, Xie, Ya-Ping, Chen, Xurong, Extraction of the proton mass radius from the vector meson photoproductions near thresholds. Phys. Rev. D, 103(9), 2021, L091501, 10.1103/PhysRevD.103.L091501 arXiv:2102.01610.[594] Wang, Rong, Evslin, Jarah, Chen, Xurong, The origin of proton mass from J/Ψ photo-production data. Eur. Phys. J. C, 80(6), 2020, 507, 10.1140/epjc/s10052-020-8057-9 arXiv:1912.12040.[595] He, Fangcheng, Sun, Peng, Yang, Yi-Bo, Demonstration of the hadron mass origin from the QCD trace anomaly. Phys. Rev. D, 104(7), 2021, 074507, 10.1103/PhysRevD.104.074507 arXiv:2101.04942.[596] Rodini, S., Metz, A., Pasquini, B., Mass sum rules of the electron in quantum electrodynamics. J. High Energy Phys., 09, 2020, 067, 10.1007/JHEP09(2020)067 arXiv:2004.03704.[597] Metz, Andreas, Pasquini, Barbara, Rodini, Simone, Revisiting the proton mass decomposition. Phys. Rev. D, 102, 2020, 114042, 10.1103/PhysRevD.102.114042 arXiv:2006.11171.[598] Lorcé, Cédric, On the hadron mass decomposition. Eur. Phys. J. C, 78(2), 2018, 120, 10.1140/epjc/s10052-018-5561-2 arXiv:1706.05853.[599] Hatta, Yosh*taka, Rajan, Abha, Tanaka, Kazuhiro, Quark and gluon contributions to the QCD trace anomaly. J. High Energy Phys., 12, 2018, 008, 10.1007/JHEP12(2018)008 arXiv:1810.05116.[600] Tanaka, Kazuhiro, Three-loop formula for quark and gluon contributions to the QCD trace anomaly. J. High Energy Phys., 01, 2019, 120, 10.1007/JHEP01(2019)120 arXiv:1811.07879.[601] Duran, B., et al. When color meets gravity; near-threshold exclusive J/ψ photoproduction on the proton. arXiv:2207.05212, 7 2022.[602] Hiller Blin, A.N., Fernández-Ramírez, C., Jackura, A., Mathieu, V., Mokeev, V.I., Pilloni, A., Szczepaniak, A.P., Studying the P

c

(4450) resonance in J/ψ photoproduction off protons. Phys. Rev. D, 94(3), 2016, 034002, 10.1103/PhysRevD.94.034002 arXiv:1606.08912.[603] Workman, R.L., et al. Review of particle physics. PTEP, 2022, 2022, 083, 10.1093/ptep/ptac097.[604] Dudek, Jozef J., Edwards, Robert G., Guo, Peng, Thomas, Christopher E., Toward the excited isoscalar meson spectrum from lattice QCD. Phys. Rev. D, 88(9), 2013, 094505, 10.1103/PhysRevD.88.094505 arXiv:1309.2608.[605] Adolph, C., et al. Odd and even partial waves of ηπ and ηπ in πp→η(′)πp at 191GeV/c. Phys. Lett. B 740 (2015), 303–311, 10.1016/j.physletb.2014.11.058 Phys. Lett. B, 811, 2020, 135913 (Erratum) arXiv:1408.4286.[606] Rodas, A., et al. Determination of the pole position of the lightest hybrid meson candidate. Phys. Rev. Lett., 122(4), 2019, 042002, 10.1103/PhysRevLett.122.042002 arXiv:1810.04171.[607] Woss, Antoni J., Dudek, Jozef J., Edwards, Robert G., Thomas, Christopher E., Wilson, David J., Decays of an exotic 1−+ hybrid meson resonance in QCD. Phys. Rev. D, 103(5), 2021, 054502, 10.1103/PhysRevD.103.054502 arXiv:2009.10034.[608] Ablikim, M., et al. Observation of an isoscalar resonance with exotic JPC=1−+ quantum numbers in J/ψ→γηη. Phys. Rev. Lett., 129(19), 2022, 192002, 10.1103/PhysRevLett.129.192002 Phys. Rev. Lett., 130, 2023, 159901 (Erratum) arXiv:2202.00621.[609] Esposito, A., Pilloni, A., Polosa, A.D., Multiquark resonances. Phys. Rep. 668 (2017), 1–97, 10.1016/j.physrep.2016.11.002 arXiv:1611.07920.[610] Guo, Feng-Kun, Hanhart, Christoph, Meißner, Ulf-G., Wang, Qian, Zhao, Qiang, Zou, Bing-Song, Hadronic molecules. Rev. Mod. Phys., 90(1), 2018, 015004, 10.1103/RevModPhys.90.015004 Rev. Mod. Phys., 94, 2022, 029901 (Erratum) arXiv:1705.00141.[611] Olsen, Stephen Lars, Skwarnicki, Tomasz, Zieminska, Daria, Nonstandard heavy mesons and baryons: experimental evidence. Rev. Mod. Phys., 90(1), 2018, 015003, 10.1103/RevModPhys.90.015003 arXiv:1708.04012.[612] Brambilla, Nora, Eidelman, Simon, Hanhart, Christoph, Nefediev, Alexey, Shen, Cheng-Ping, Thomas, Christopher E., Vairo, Antonio, Yuan, Chang-Zheng, The XYZ states: experimental and theoretical status and perspectives. Phys. Rep. 873 (2020), 1–154, 10.1016/j.physrep.2020.05.001 arXiv:1907.07583.[613] Chen, Hua-Xing, Chen, Wei, Liu, Xiang, Liu, Yan-Rui, Zhu, Shi-Lin, An updated review of the new hadron states. Rep. Prog. Phys., 86(2), 2023, 026201, 10.1088/1361-6633/aca3b6 arXiv:2204.02649.[614] Aaij, Roel, et al. Observation of J/ψp resonances consistent with pentaquark states in Λ

b

0→J/ψKp decays. Phys. Rev. Lett., 115, 2015, 072001, 10.1103/PhysRevLett.115.072001 arXiv:1507.03414.[615] Aaij, Roel, et al. Observation of a narrow pentaquark state, P

c

(4312)+, and of two-peak structure of the P

c

(4450)+. Phys. Rev. Lett., 122(22), 2019, 222001, 10.1103/PhysRevLett.122.222001 arXiv:1904.03947.[616] Wu, Biaogang, Du, Xiaojian, Sibila, Matthew, Rapp, Ralf, X(3872)transport in heavy-ion collisions. Eur. Phys. J. A, 57(4), 2021, 122, 10.1140/epja/s10050-021-00623-4 Eur. Phys. J. A, 57, 2021, 314 (Erratum) arXiv:2006.09945.[617] Chen, Baoyi, Jiang, Liu, Liu, Xiao-Hai, Liu, Yunpeng, Zhao, Jiaxing, X(3872) production in relativistic heavy-ion collisions. Phys. Rev. C, 105(5), 2022, 054901, 10.1103/PhysRevC.105.054901 arXiv:2107.00969.[618] Zhang, Hui, Liao, Jinfeng, Wang, Enke, Wang, Qian, Xing, Hongxi, Deciphering the nature of X(3872) in heavy ion collisions. Phys. Rev. Lett., 126(1), 2021, 012301, 10.1103/PhysRevLett.126.012301 arXiv:2004.00024.[619] Aaij, Roel, et al. Observation of multiplicity dependent prompt χ

c1

(3872) and ψ(2S) production in pp collisions. Phys. Rev. Lett., 126(9), 2021, 092001, 10.1103/PhysRevLett.126.092001 arXiv:2009.06619.[620] Sirunyan, Albert M., et al. Evidence for X(3872) in Pb-Pb collisions and studies of its prompt production at s

NN

=5.02 TeV. Phys. Rev. Lett., 128(3), 2022, 032001, 10.1103/PhysRevLett.128.032001 arXiv:2102.13048.[621] Esposito, Angelo, Ferreiro, Elena G., Pilloni, Alessandro, Polosa, Antonio D., Salgado, Carlos A., The nature of X(3872) from high-multiplicity pp collisions. Eur. Phys. J. C, 81(7), 2021, 669, 10.1140/epjc/s10052-021-09425-w arXiv:2006.15044.[622] Braaten, Eric, He, Li-Ping, Ingles, Kevin, Jiang, Jun, Production of X(3872) at high multiplicity. Phys. Rev. D, 103(7), 2021, L071901, 10.1103/PhysRevD.103.L071901 arXiv:2012.13499.[623] Frankfurt, L.L., Strikman, M.I., Hard nuclear processes and microscopic nuclear structure. Phys. Rep. 160 (1988), 235–427, 10.1016/0370-1573(88)90179-2.[624] Subedi, R., et al. Probing cold dense nuclear matter. Science 320 (2008), 1476–1478, 10.1126/science.1156675 arXiv:0908.1514.[625] Ciofi degli Atti, Claudio, In-medium short-range dynamics of nucleons: recent theoretical and experimental advances. Phys. Rep. 590 (2015), 1–85, 10.1016/j.physrep.2015.06.002.[626] Ryckebusch, Jan, Cosyn, Wim, Vieijra, Tom, Casert, Corneel, Isospin composition of the high-momentum fluctuations in nuclei from asymptotic momentum distributions. Phys. Rev. C, 100(5), 2019, 054620, 10.1103/PhysRevC.100.054620 arXiv:1907.07259.[627] Hen, O., Miller, G.A., Piasetzky, E., Weinstein, L.B., Nucleon-nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys., 89(4), 2017, 045002, 10.1103/RevModPhys.89.045002 arXiv:1611.09748.[628] Cohen, E.O., et al. Center of mass motion of short-range correlated nucleon pairs studied via the A(e,epp) reaction. Phys. Rev. Lett., 121(9), 2018, 092501, 10.1103/PhysRevLett.121.092501 arXiv:1805.01981.[629] Arrington, John, Fomin, Nadia, Schmidt, Axel, Progress in understanding short-range structure in nuclei: an experimental perspective. https://doi.org/10.1146/annurev-nucl-102020-022253 arXiv:2203.02608, 3 2022.[630] Schmidt, A., et al. Probing the core of the strong nuclear interaction. Nature 578:7796 (2020), 540–544, 10.1038/s41586-020-2021-6 arXiv:2004.11221.[631] Li, S., et al. Revealing the short-range structure of the mirror nuclei 3H and 3He. Nature 609:7925 (2022), 41–45, 10.1038/s41586-022-05007-2 arXiv:2210.04189.[632] Korover, I., et al. 12C(e,e'pN) measurements of short range correlations in the tensor-to-scalar interaction transition region. Phys. Lett. B, 820, 2021, 136523, 10.1016/j.physletb.2021.136523 arXiv:2004.07304.[633] Hen, O., et al. Momentum sharing in imbalanced Fermi systems. Science 346 (2014), 614–617, 10.1126/science.1256785 arXiv:1412.0138.[634] Duer, M., et al. Probing high-momentum protons and neutrons in neutron-rich nuclei. Nature 560:7720 (2018), 617–621, 10.1038/s41586-018-0400-z.[635] Duer, M., et al. Direct observation of proton-neutron short-range correlation dominance in heavy nuclei. Phys. Rev. Lett., 122(17), 2019, 172502, 10.1103/PhysRevLett.122.172502 arXiv:1810.05343.[636] Cruz-Torres, R., et al. Probing few-body nuclear dynamics via 3H and 3He (e,ep)pn cross-section measurements. Phys. Rev. Lett., 124(21), 2020, 212501, 10.1103/PhysRevLett.124.212501 arXiv:2001.07230.[637] Weiss, R., Denniston, A.W., Pybus, J.R., Hen, O., Piasetzky, E., Schmidt, A., Weinstein, L.B., Barnea, N., Extracting the number of short-range correlated nucleon pairs from inclusive electron scattering data. Phys. Rev. C, 103(3), 2021, L031301, 10.1103/PhysRevC.103.L031301 arXiv:2005.01621.[638] Weiss, Ronen, Bazak, Betzalel, Barnea, Nir, Generalized nuclear contacts and momentum distributions. Phys. Rev. C, 92(5), 2015, 054311, 10.1103/PhysRevC.92.054311 arXiv:1503.07047.[639] Weiss, R., Cruz-Torres, R., Barnea, N., Piasetzky, E., Hen, O., The nuclear contacts and short range correlations in nuclei. Phys. Lett. B 780 (2018), 211–215, 10.1016/j.physletb.2018.01.061 arXiv:1612.00923.[640] Weiss, Ronen, Korover, Igor, Piasetzky, Eliezer, Hen, Or, Barnea, Nir, Energy and momentum dependence of nuclear short-range correlations - spectral function, exclusive scattering experiments and the contact formalism. Phys. Lett. B 791 (2019), 242–248, 10.1016/j.physletb.2019.02.019 arXiv:1806.10217.[641] Cruz-Torres, R., Lonardoni, D., Weiss, R., Barnea, N., Higinbotham, D.W., Piasetzky, E., Schmidt, A., Weinstein, L.B., Wiringa, R.B., Hen, O., Many-body factorization and position–momentum equivalence of nuclear short-range correlations. Nat. Phys. 17:3 (2021), 306–310, 10.1038/s41567-020-01053-7 arXiv:1907.03658.[642] Carlson, J., Gandolfi, S., Pederiva, F., Pieper, Steven C., Schiavilla, R., Schmidt, K.E., Wiringa, R.B., Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys., 87, 2015, 1067, 10.1103/RevModPhys.87.1067 arXiv:1412.3081.[643] Pybus, J.R., Korover, I., Weiss, R., Schmidt, A., Barnea, N., Higinbotham, D.W., Piasetzky, E., Strikman, M., Weinstein, L.B., Hen, O., Generalized contact formalism analysis of the 4He(e,e'pN) reaction. Phys. Lett. B, 805, 2020, 135429, 10.1016/j.physletb.2020.135429 arXiv:2003.02318.[644] West, Jennifer Rittenhouse, Diquark induced short-range nucleon-nucleon correlations & the EMC effect. Nucl. Phys. A, 1029, 2023, 122563, 10.1016/j.nuclphysa.2022.122563 arXiv:2009.06968.[645] Yero, Carlos, et al. Probing the deuteron at very large internal momenta. Phys. Rev. Lett., 125(26), 2020, 262501, 10.1103/PhysRevLett.125.262501 arXiv:2008.08058.[646] Cruz-Torres, R., et al. Comparing proton momentum distributions in A=2 and 3 nuclei via 2H 3H and 3He (e,ep) measurements. Phys. Lett. B, 797, 2019, 134890, 10.1016/j.physletb.2019.134890 arXiv:1902.06358.[647] Weinstein, L.B., Piasetzky, E., Higinbotham, D.W., Gomez, J., Hen, O., Shneor, R., Short range correlations and the EMC effect. Phys. Rev. Lett., 106, 2011, 052301, 10.1103/PhysRevLett.106.052301 arXiv:1009.5666.[648] Schmookler, B., et al. Modified structure of protons and neutrons in correlated pairs. Nature 566:7744 (2019), 354–358, 10.1038/s41586-019-0925-9 arXiv:2004.12065.[649] Arrington, J., Fomin, N., Searching for flavor dependence in nuclear quark behavior. Phys. Rev. Lett., 123(4), 2019, 042501, 10.1103/PhysRevLett.123.042501 arXiv:1903.12535.[650] Kim, Dmitriy N., Miller, Gerald A., Light-front holography model of the EMC effect. Phys. Rev. C, 106(5), 2022, 055202, 10.1103/PhysRevC.106.055202 arXiv:2209.13753.[651] Segarra, E.P., Schmidt, A., Kutz, T., Higinbotham, D.W., Piasetzky, E., Strikman, M., Weinstein, L.B., Hen, O., Neutron valence structure from nuclear deep inelastic scattering. Phys. Rev. Lett., 124(9), 2020, 092002, 10.1103/PhysRevLett.124.092002 arXiv:1908.02223.[652] Arrington, J., et al. Measurement of the EMC effect in light and heavy nuclei. Phys. Rev. C, 104(6), 2021, 065203, 10.1103/PhysRevC.104.065203 arXiv:2110.08399.[653] Karki, A., et al. First measurement of the EMC effect in 10B and 11B. arXiv:2207.03850, 7 2022.[654] Segarra, E.P., Pybus, J.R., Hauenstein, F., Higinbotham, D.W., Miller, G.A., Piasetzky, E., Schmidt, A., Strikman, M., Weinstein, L.B., Hen, O., Short-range correlations and the nuclear EMC effect in deuterium and helium-3. Phys. Rev. Res., 3(2), 2021, 023240, 10.1103/PhysRevResearch.3.023240 arXiv:2006.10249.[655] Cloet, I.C., Bentz, Wolfgang, Thomas, Anthony William, Spin-dependent structure functions in nuclear matter and the polarized EMC effect. Phys. Rev. Lett., 95, 2005, 052302, 10.1103/PhysRevLett.95.052302 arXiv:nucl-th/0504019.[656] Cloet, I.C., Bentz, Wolfgang, Thomas, Anthony William, EMC and polarized EMC effects in nuclei. Phys. Lett. B 642 (2006), 210–217, 10.1016/j.physletb.2006.08.076 arXiv:nucl-th/0605061.[657] Tronchin, Stephen, Matevosyan, Hrayr H., Thomas, Anthony W., Polarized EMC effect in the QMC model. Phys. Lett. B 783 (2018), 247–252, 10.1016/j.physletb.2018.06.065 arXiv:1806.00481.[658] Cloet, I.C., Bentz, W., Thomas, A.W., Isovector EMC effect explains the NuTeV anomaly. Phys. Rev. Lett., 102, 2009, 252301, 10.1103/PhysRevLett.102.252301 arXiv:0901.3559.[659] Aad, Georges, et al. Z boson production in p+Pb collisions at s

NN

=5.02 TeV measured with the ATLAS detector. Phys. Rev. C, 92(4), 2015, 044915, 10.1103/PhysRevC.92.044915 arXiv:1507.06232.[660] Adam, Jaroslav, et al. W and Z boson production in p-Pb collisions at s

NN

= 5.02 TeV. J. High Energy Phys., 02, 2017, 077, 10.1007/JHEP02(2017)077 arXiv:1611.03002.[661] Acharya, Shreyasi, et al. Z-boson production in p-Pb collisions at s

NN

=8.16 TeV and Pb-Pb collisions at s

NN

=5.02 TeV. J. High Energy Phys., 09, 2020, 076, 10.1007/JHEP09(2020)076 arXiv:2005.11126.[662] Sirunyan, Albert M., et al. Study of Drell-Yan dimuon production in proton-lead collisions at s

NN

= 8.16 TeV. J. High Energy Phys., 05, 2021, 182, 10.1007/JHEP05(2021)182 arXiv:2102.13648.[663] Measurement of the Z boson production cross-section in proton-lead collisions at s

NN

=8.16TeV. arXiv:2205.10213, 5 2022.[664] Sirunyan, Albert M., et al. Observation of nuclear modifications in W± boson production in pPb collisions at s

NN

= 8.16 TeV. Phys. Lett. B, 800, 2020, 135048, 10.1016/j.physletb.2019.135048 arXiv:1905.01486.[665] W±-boson production in p−Pb collisions at s

NN

=8.16 TeV and PbPb collisions at s

NN

=5.02 TeV. arXiv:2204.10640, 4 2022.[666] Duwentäster, P., Husová, L.A., Ježo, T., Klasen, M., Kovařík, K., Kusina, A., Muzakka, K.F., Olness, F.I., Schienbein, I., Yu, J.Y., Impact of inclusive hadron production data on nuclear gluon PDFs. Phys. Rev. D, 104, 2021, 094005, 10.1103/PhysRevD.104.094005 arXiv:2105.09873.[667] Eskola, Kari J., Paakkinen, Petja, Paukkunen, Hannu, Salgado, Carlos A., EPPS21: a global QCD analysis of nuclear PDFs. Eur. Phys. J. C, 82(5), 2022, 413, 10.1140/epjc/s10052-022-10359-0 arXiv:2112.12462.[668] Khalek, Rabah Abdul, Gauld, Rhorry, Giani, Tommaso, Nocera, Emanuele R., Rabemananjara, Tanjona R., Rojo, Juan, nNNPDF3.0: evidence for a modified partonic structure in heavy nuclei. Eur. Phys. J. C, 82(6), 2022, 507, 10.1140/epjc/s10052-022-10417-7 arXiv:2201.12363.[669] Helenius, Ilkka, Walt, Marina, Vogelsang, Werner, NNLO nuclear parton distribution functions with electroweak-boson production data from the LHC. Phys. Rev. D, 105(9), 2022, 094031, 10.1103/PhysRevD.105.094031 arXiv:2112.11904.[670] Hattawy, M., et al. First exclusive measurement of deeply virtual Compton scattering off 4He: toward the 3D tomography of nuclei. Phys. Rev. Lett., 119(20), 2017, 202004, 10.1103/PhysRevLett.119.202004 arXiv:1707.03361.[671] Hattawy, M., et al. Exploring the structure of the bound proton with deeply virtual Compton scattering. Phys. Rev. Lett., 123(3), 2019, 032502, 10.1103/PhysRevLett.123.032502 arXiv:1812.07628.[672] Dupré, R., et al. Measurement of deeply virtual Compton scattering off He4 with the CEBAF large acceptance spectrometer at Jefferson Lab. Phys. Rev. C, 104(2), 2021, 025203, 10.1103/PhysRevC.104.025203 arXiv:2102.07419.[673] Aaij, Roel, et al. Measurement of the nuclear modification factor and prompt charged particle production in p−Pb and pp collisions at s

NN

=5 TeV. Phys. Rev. Lett., 128(14), 2022, 142004, 10.1103/PhysRevLett.128.142004 arXiv:2108.13115.[674] Shi, Yu, Wang, Lei, Wei, Shu-Yi, Xiao, Bo-Wen, Pursuing the precision study for color glass condensate in forward hadron productions. Phys. Rev. Lett., 128(20), 2022, 202302, 10.1103/PhysRevLett.128.202302 arXiv:2112.06975.[675] Arsene, I., et al. On the evolution of the nuclear modification factors with rapidity and centrality in d + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 93, 2004, 242303, 10.1103/PhysRevLett.93.242303 arXiv:nucl-ex/0403005.[676] Adams, J., et al. Forward neutral pion production in p+p and d+Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett., 97, 2006, 152302, 10.1103/PhysRevLett.97.152302 arXiv:nucl-ex/0602011.[677] Marquet, Cyrille, Forward inclusive dijet production and azimuthal correlations in p(A) collisions. Nucl. Phys. A 796 (2007), 41–60, 10.1016/j.nuclphysa.2007.09.001 arXiv:0708.0231.[678] Dominguez, Fabio, Marquet, Cyrille, Xiao, Bo-Wen, Yuan, Feng, Universality of unintegrated gluon distributions at small x. Phys. Rev. D, 83, 2011, 105005, 10.1103/PhysRevD.83.105005 arXiv:1101.0715.[679] Braidot, Ermes, Two particle correlations at forward rapidity in STAR. Nucl. Phys. A 854 (2011), 168–174, 10.1016/j.nuclphysa.2011.01.016 arXiv:1008.3989.[680] Adare, A., et al. Suppression of back-to-back hadron pairs at forward rapidity in d+Au collisions at s

NN

=200 GeV. Phys. Rev. Lett., 107, 2011, 172301, 10.1103/PhysRevLett.107.172301 arXiv:1105.5112.[681] Albacete, Javier L., Marquet, Cyrille, Azimuthal correlations of forward di-hadrons in d+Au collisions at RHIC in the color glass condensate. Phys. Rev. Lett., 105, 2010, 162301, 10.1103/PhysRevLett.105.162301 arXiv:1005.4065.[682] Stasto, Anna, Xiao, Bo-Wen, Yuan, Feng, Back-to-back correlations of di-hadrons in dAu collisions at RHIC. Phys. Lett. B 716 (2012), 430–434, 10.1016/j.physletb.2012.08.044 arXiv:1109.1817.[683] Abdallah, M.S., et al. Evidence for nonlinear gluon effects in QCD and their mass number dependence at STAR. Phys. Rev. Lett., 129(9), 2022, 092501, 10.1103/PhysRevLett.129.092501 arXiv:2111.10396.[684] Aaboud, Morad, et al. Dijet azimuthal correlations and conditional yields in pp and p+Pb collisions at sNN=5.02 TeV with the ATLAS detector. Phys. Rev. C, 100(3), 2019, 034903, 10.1103/PhysRevC.100.034903 arXiv:1901.10440.[685] van Hameren, Andreas, Kotko, Piotr, Kutak, Krzysztof, Sapeta, Sebastian, Broadening and saturation effects in dijet azimuthal correlations in p-p and p-Pb collisions at s= 5.02 TeV. Phys. Lett. B 795 (2019), 511–515, 10.1016/j.physletb.2019.06.055 arXiv:1903.01361.[686] Moran, S., et al. Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector. Phys. Rev. C, 105(1), 2022, 015201, 10.1103/PhysRevC.105.015201 arXiv:2109.09951.[687] Paul, S.J., et al. Observation of azimuth-dependent suppression of hadron pairs in electron scattering off nuclei. Phys. Rev. Lett., 129(18), 2022, 182501, 10.1103/PhysRevLett.129.182501 arXiv:2207.06682.[688] Chetry, T., et al. First measurement of Λ electroproduction off nuclei in the current and target fragmentation regions. arXiv:2210.13691, 10 2022.[689] Bhetuwal, D., et al. Ruling out color transparency in quasielastic 12C(e,e'p) up to Q2 of 14.2 (GeV/c)2. Phys. Rev. Lett., 126(8), 2021, 082301, 10.1103/PhysRevLett.126.082301 arXiv:2011.00703.[690] Clasie, B., et al. Measurement of nuclear transparency for the A(e, e-prime' pi+) reaction. Phys. Rev. Lett., 99, 2007, 242502, 10.1103/PhysRevLett.99.242502 arXiv:0707.1481.[691] Qian, X., et al. Experimental study of the A(e,e'π+) Reaction on 1H, 2H, 12C, 27Al, 63Cu and 197Au. Phys. Rev. C, 81, 2010, 055209, 10.1103/PhysRevC.81.055209 arXiv:0908.1616.[692] El Fassi, L., et al. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei. Phys. Lett. B 712 (2012), 326–330, 10.1016/j.physletb.2012.05.019 arXiv:1201.2735.[693] El Fassi, Lamiaa, Chasing QCD signatures in nuclei using color coherence phenomena. Physics 4:3 (August 2022), 970–980, 10.3390/physics4030064.[694] Huber, Garth M., Li, Wenliang B., Cosyn, Wim, Pire, Bernard, u-channel color transparency observables. Physics 4:2 (apr 2022), 451–461, 10.3390/physics4020030.[695] Wilson, Kenneth G., Confinement of quarks. Phys. Rev. D 10 (1974), 2445–2459, 10.1103/PhysRevD.10.2445.[696] Aoki, Y., et al. FLAG review. Eur. Phys. J. C, 82(10), 2021, 869, 10.1140/epjc/s10052-022-10536-1 arXiv:2111.09849, 2022.[697] Bhattacharya, Tanmoy, Cirigliano, Vincenzo, Cohen, Saul, Gupta, Rajan, Lin, Huey-Wen, Axial, Boram Yoon, Scalar and tensor charges of the nucleon from 2+1+1-flavor lattice QCD. Phys. Rev. D, 94(5), 2016, 054508, 10.1103/PhysRevD.94.054508 arXiv:1606.07049.[698] Berkowitz, Evan, et al. An accurate calculation of the nucleon axial charge with lattice QCD. arXiv:1704.01114, 4 2017.[699] Chang, C.C., et al. A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics. Nature 558:7708 (2018), 91–94, 10.1038/s41586-018-0161-8 arXiv:1805.12130.[700] Liang, Jian, Yang, Yi-Bo, Draper, Terrence, Gong, Ming, Liu, Keh-Fei, Quark spins and anomalous ward identity. Phys. Rev. D, 98(7), 2018, 074505, 10.1103/PhysRevD.98.074505 arXiv:1806.08366.[701] Gupta, Rajan, Jang, Yong-Chull, Yoon, Boram, Lin, Huey-Wen, Cirigliano, Vincenzo, Bhattacharya, Tanmoy, Isovector charges of the nucleon from 2+1+1-flavor lattice QCD. Phys. Rev. D, 98, 2018, 034503, 10.1103/PhysRevD.98.034503 arXiv:1806.09006.[702] Shintani, Eigo, Ishikawa, Ken-Ichi, Kuramashi, Yoshinobu, Sasaki, Shoichi, Yamazaki, Takeshi, Nucleon form factors and root-mean-square radii on a (10.8 fm)4 lattice at the physical point. Phys. Rev. D, 99(1), 2019, 014510, 10.1103/PhysRevD.99.014510 Phys. Rev. D, 102, 2020, 019902 (Erratum) arXiv:1811.07292.[703] Hasan, Nesreen, Green, Jeremy, Meinel, Stefan, Engelhardt, Michael, Krieg, Stefan, Negele, John, Pochinsky, Andrew, Syritsyn, Sergey, Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass. Phys. Rev. D, 99(11), 2019, 114505, 10.1103/PhysRevD.99.114505 arXiv:1903.06487.[704] Harris, Tim, von Hippel, Georg, Junnarkar, Pariksh*t, Meyer, Harvey B., Ottnad, Konstantin, Wilhelm, Jonas, Wittig, Hartmut, Wrang, Linus, Nucleon isovector charges and twist-2 matrix elements with N

f

=2+1 dynamical Wilson quarks. Phys. Rev. D, 100(3), 2019, 034513, 10.1103/PhysRevD.100.034513 arXiv:1905.01291.[705] Alexandrou, C., Bacchio, S., Constantinou, M., Finkenrath, J., Hadjiyiannakou, K., Jansen, K., Koutsou, G., Aviles-Casco, A. Vaquero, Nucleon axial, tensor, and scalar charges and σ-terms in lattice QCD. Phys. Rev. D, 102(5), 2020, 054517, 10.1103/PhysRevD.102.054517 arXiv:1909.00485.[706] Walker-Loud, André, et al. Lattice QCD determination of g

A

. PoS, CD2018, 2020, 020, 10.22323/1.317.0020 arXiv:1912.08321.[707] Park, Sungwoo, Gupta, Rajan, Yoon, Boram, Mondal, Santanu, Bhattacharya, Tanmoy, Jang, Yong-Chull, Joó, Bálint, Winter, Frank, Precision nucleon charges and form factors using (2+1)-flavor lattice QCD. Phys. Rev. D, 105(5), 2022, 054505, 10.1103/PhysRevD.105.054505 arXiv:2103.05599.[708] Cirigliano, Vincenzo, de Vries, Jordy, Hayen, Leendert, Mereghetti, Emanuele, Walker-Loud, André, Pion-induced radiative corrections to neutron β decay. Phys. Rev. Lett., 129(12), 2022, 121801, 10.1103/PhysRevLett.129.121801 arXiv:2202.10439.[709] Lin, Huey-Wen, Melnitchouk, W., Prokudin, Alexei, Sato, N., Shows, H., First Monte Carlo global analysis of nucleon transversity with lattice QCD constraints. Phys. Rev. Lett., 120(15), 2018, 152502, 10.1103/PhysRevLett.120.152502 arXiv:1710.09858.[710] Alexandrou, C., Bacchio, S., Constantinou, M., Finkenrath, J., Hadjiyiannakou, K., Jansen, K., Koutsou, G., Aviles-Casco, A. Vaquero, Proton and neutron electromagnetic form factors from lattice QCD. Phys. Rev. D, 100(1), 2019, 014509, 10.1103/PhysRevD.100.014509 arXiv:1812.10311.[711] Djukanovic, D., Harris, T., von Hippel, G., Junnarkar, P.M., Meyer, H.B., Mohler, D., Ottnad, K., Schulz, T., Wilhelm, J., Wittig, H., Isovector electromagnetic form factors of the nucleon from lattice QCD and the proton radius puzzle. Phys. Rev. D, 103(9), 2021, 094522, 10.1103/PhysRevD.103.094522 arXiv:2102.07460.[712] Guo, Yuxun, Ji, Xiangdong, Shiells, Kyle, Generalized parton distributions through universal moment parameterization: zero skewness case. J. High Energy Phys., 09, 2022, 215, 10.1007/JHEP09(2022)215 arXiv:2207.05768.[713] Cui, Zhu-Fang, Ding, Minghui, Gao, Fei, Raya, Khepani, Binosi, Daniele, Chang, Lei, Roberts, Craig D., Rodriguez-Quintero, Jose, Schmidt, Sebastian M., Higgs modulation of emergent mass as revealed in kaon and pion parton distributions. Eur. Phys. J. A, 57(1), 2021, 5, 10.1140/epja/s10050-020-00318-2 arXiv:2006.14075.[714] Roberts, Craig D., Schmidt, Sebastian M., Reflections upon the emergence of hadronic mass. Eur. Phys. J. Spec. Top. 229:22–23 (2020), 3319–3340, 10.1140/epjst/e2020-000064-6 arXiv:2006.08782.[715] Dudek, Jozef, et al. Physics opportunities with the 12 GeV upgrade at Jefferson Lab. Eur. Phys. J. A, 48, 2012, 187, 10.1140/epja/i2012-12187-1 arXiv:1208.1244.[716] Khalek, R. Abdul, et al. Science requirements and detector concepts for the electron-ion collider: EIC yellow report. Nucl. Phys. A, 1026, 2022, 122447, 10.1016/j.nuclphysa.2022.122447 arXiv:2103.05419.[717] Choi, Ho-Meoyng, Frederico, T., Ji, Chueng-Ryong, de Melo, J.P.B.C., Pion off-shell electromagnetic form factors: data extraction and model analysis. Phys. Rev. D, 100(11), 2019, 116020, 10.1103/PhysRevD.100.116020 arXiv:1908.01185.[718] Brömmel, D., et al. The pion form-factor from lattice QCD with two dynamical flavours. Eur. Phys. J. C 51 (2007), 335–345, 10.1140/epjc/s10052-007-0295-6 arXiv:hep-lat/0608021.[719] Frezzotti, R., Lubicz, V., Simula, S., Electromagnetic form factor of the pion from twisted-mass lattice QCD at N(f) = 2. Phys. Rev. D, 79, 2009, 074506, 10.1103/PhysRevD.79.074506 arXiv:0812.4042.[720] Aoki, S., et al. Pion form factors from two-flavor lattice QCD with exact chiral symmetry. Phys. Rev. D, 80, 2009, 034508, 10.1103/PhysRevD.80.034508 arXiv:0905.2465.[721] Brandt, Bastian B., Jüttner, Andreas, Wittig, Hartmut, The pion vector form factor from lattice QCD and NNLO chiral perturbation theory. J. High Energy Phys., 11, 2013, 034, 10.1007/JHEP11(2013)034 arXiv:1306.2916.[722] Alexandrou, C., et al. Pion vector form factor from lattice QCD at the physical point. Phys. Rev. D, 97(1), 2018, 014508, 10.1103/PhysRevD.97.014508 arXiv:1710.10401.[723] Bonnet, Frederic D.R., Edwards, Robert G., Fleming, George Tamminga, Lewis, Randy, Richards, David G., Lattice computations of the pion form-factor. Phys. Rev. D, 72, 2005, 054506, 10.1103/PhysRevD.72.054506 arXiv:hep-lat/0411028.[724] Boyle, P.A., Flynn, J.M., Juttner, A., Kelly, C., de Lima, H. Pedroso, Maynard, C.M., Sachrajda, C.T., Zanotti, J.M., The pion's electromagnetic form-factor at small momentum transfer in full lattice QCD. J. High Energy Phys., 07, 2008, 112, 10.1088/1126-6708/2008/07/112 arXiv:0804.3971.[725] Nguyen, Oanh Hoang, Ishikawa, Ken-Ichi, Ukawa, Akira, Ukita, Naoya, Electromagnetic form factor of pion from N

f

=2+1 dynamical flavor QCD. J. High Energy Phys., 04, 2011, 122, 10.1007/JHEP04(2011)122 arXiv:1102.3652.[726] f*ckaya, H., Aoki, S., Hashimoto, S., Kaneko, T., Matsufuru, H., Noaki, J., Computation of the electromagnetic pion form factor from lattice QCD in the ϵ regime. Phys. Rev. D, 90(3), 2014, 034506, 10.1103/PhysRevD.90.034506 arXiv:1405.4077.[727] Aoki, S., Cossu, G., Feng, X., Hashimoto, S., Kaneko, T., Noaki, J., Onogi, T., Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry. Phys. Rev. D, 93(3), 2016, 034504, 10.1103/PhysRevD.93.034504 arXiv:1510.06470.[728] Feng, Xu, Fu, Yang, Jin, Lu-Chang, Lattice QCD calculation of the pion charge radius using a model-independent method. Phys. Rev. D, 101(5), 2020, 051502, 10.1103/PhysRevD.101.051502 arXiv:1911.04064.[729] Wang, Gen, Liang, Jian, Draper, Terrence, Liu, Keh-Fei, Yang, Yi-Bo, Lattice calculation of pion form factor with overlap fermions. arXiv:2006.05431, 6 2020.[730] Gao, Xiang, Karthik, Nikhil, Mukherjee, Swagato, Petreczky, Peter, Syritsyn, Sergey, Zhao, Yong, Pion form factor and charge radius from lattice QCD at the physical point. Phys. Rev. D, 104(11), 2021, 114515, 10.1103/PhysRevD.104.114515 arXiv:2102.06047.[731] Koponen, J., Bursa, F., Davies, C.T.H., Dowdall, R.J., Lepage, G.P., Size of the pion from full lattice QCD with physical u, d, s and c quarks. Phys. Rev. D, 93(5), 2016, 054503, 10.1103/PhysRevD.93.054503 arXiv:1511.07382.[732] Bali, Gunnar S., Lang, Bernhard, Musch, Bernhard U., Schäfer, Andreas, Novel quark smearing for hadrons with high momenta in lattice QCD. Phys. Rev. D, 93(9), 2016, 094515, 10.1103/PhysRevD.93.094515 arXiv:1602.05525.[733] Ji, Xiang-Dong, Gauge-invariant decomposition of nucleon spin. Phys. Rev. Lett. 78 (1997), 610–613, 10.1103/PhysRevLett.78.610 arXiv:hep-ph/9603249.[734] Alexandrou, C., Bacchio, S., Constantinou, M., Finkenrath, J., Hadjiyiannakou, K., Jansen, K., Koutsou, G., Panagopoulos, H., Spanoudes, G., Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass. Phys. Rev. D, 101(9), 2020, 094513, 10.1103/PhysRevD.101.094513 arXiv:2003.08486.[735] Wang, Gen, Yang, Yi-Bo, Liang, Jian, Draper, Terrence, Liu, Keh-Fei, Proton momentum and angular momentum decompositions with overlap fermions. Phys. Rev. D, 106(1), 2022, 014512, 10.1103/PhysRevD.106.014512 arXiv:2111.09329.[736] Engelhardt, M., Green, J.R., Hasan, N., Krieg, S., Meinel, S., Negele, J., Pochinsky, A., Syritsyn, S., From Ji to Jaffe-Manohar orbital angular momentum in lattice QCD using a direct derivative method. Phys. Rev. D, 102(7), 2020, 074505, 10.1103/PhysRevD.102.074505 arXiv:2008.03660.[737] Engelhardt, Michael, et al. Quark spin-orbit correlations in the proton. PoS, LATTICE2021, 2022, 413, 10.22323/1.396.0413 arXiv:2112.13464.[738] Yang, Yi-Bo, Liang, Jian, Bi, Yu-Jiang, Chen, Ying, Draper, Terrence, Liu, Keh-Fei, Liu, Zhaofeng, Proton mass decomposition from the QCD energy momentum tensor. Phys. Rev. Lett., 121(21), 2018, 212001, 10.1103/PhysRevLett.121.212001 arXiv:1808.08677.[739] Ji, Xiang-Dong, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74 (1995), 1071–1074, 10.1103/PhysRevLett.74.1071 arXiv:hep-ph/9410274.[740] Monahan, Christopher, Recent developments in x-dependent structure calculations. PoS, LATTICE2018, 2018, 018, 10.22323/1.334.0018 arXiv:1811.00678.[741] Cichy, Krzysztof, Constantinou, Martha, A guide to light-cone PDFs from lattice QCD: an overview of approaches, techniques and results. Adv. High Energy Phys., 2019, 2019, 3036904, 10.1155/2019/3036904 arXiv:1811.07248.[742] Ji, Xiangdong, Liu, Yu-Sheng, Liu, Yizhuang, Zhang, Jian-Hui, Zhao, Yong, Large-momentum effective theory. Rev. Mod. Phys., 93(3), 2021, 035005, 10.1103/RevModPhys.93.035005 arXiv:2004.03543.[743] Constantinou, Martha, et al. Lattice QCD calculations of parton physics. arXiv:2202.07193, 2 2022.[744] Liu, Keh-Fei, Dong, Shao-Jing, Origin of difference between anti-d and anti-u partons in the nucleon. Phys. Rev. Lett. 72 (1994), 1790–1793, 10.1103/PhysRevLett.72.1790 arXiv:hep-ph/9306299.[745] Liu, K.F., Dong, S.J., Draper, Terrence, Leinweber, D., Sloan, J.H., Wilcox, W., Woloshyn, R.M., Valence QCD: connecting QCD to the quark model. Phys. Rev. D, 59, 1999, 112001, 10.1103/PhysRevD.59.112001 arXiv:hep-ph/9806491.[746] Liu, Keh-Fei, Parton degrees of freedom from the path integral formalism. Phys. Rev. D, 62, 2000, 074501, 10.1103/PhysRevD.62.074501 arXiv:hep-ph/9910306.[747] Detmold, William, Lin, C.J. David, Deep-inelastic scattering and the operator product expansion in lattice QCD. Phys. Rev. D, 73, 2006, 014501, 10.1103/PhysRevD.73.014501 arXiv:hep-lat/0507007.[748] Detmold, William, Grebe, Anthony V., Kanamori, Issaku, Lin, C.J. David, Perry, Robert J., Zhao, Yong, Parton physics from a heavy-quark operator product expansion: formalism and Wilson coefficients. Phys. Rev. D, 104(7), 2021, 074511, 10.1103/PhysRevD.104.074511 arXiv:2103.09529.[749] Braun, V., Müller, Dieter, Exclusive processes in position space and the pion distribution amplitude. Eur. Phys. J. C 55 (2008), 349–361, 10.1140/epjc/s10052-008-0608-4 arXiv:0709.1348.[750] Ji, Xiangdong, Parton physics on a Euclidean lattice. Phys. Rev. Lett., 110, 2013, 262002, 10.1103/PhysRevLett.110.262002 arXiv:1305.1539.[751] Ji, Xiangdong, Parton physics from large-momentum effective field theory. Sci. China, Phys. Mech. Astron. 57 (2014), 1407–1412, 10.1007/s11433-014-5492-3 arXiv:1404.6680.[752] Radyushkin, Anatoly, Nonperturbative evolution of parton quasi-distributions. Phys. Lett. B 767 (2017), 314–320, 10.1016/j.physletb.2017.02.019 arXiv:1612.05170.[753] Ma, Yan-Qing, Qiu, Jian-Wei, Extracting parton distribution functions from lattice QCD calculations. Phys. Rev. D, 98(7), 2018, 074021, 10.1103/PhysRevD.98.074021 arXiv:1404.6860.[754] Ma, Yan-Qing, Qiu, Jian-Wei, QCD factorization and PDFs from lattice QCD calculation. Int. J. Mod. Phys. Conf. Ser., 37, 2015, 1560041, 10.1142/S2010194515600411 arXiv:1412.2688.[755] Ma, Yan-Qing, Qiu, Jian-Wei, Exploring partonic structure of hadrons using ab initio lattice QCD calculations. Phys. Rev. Lett., 120(2), 2018, 022003, 10.1103/PhysRevLett.120.022003 arXiv:1709.03018.[756] Chambers, A.J., Horsley, R., Nakamura, Y., Perlt, H., Rakow, P.E.L., Schierholz, G., Schiller, A., Somfleth, K., Young, R.D., Zanotti, J.M., Nucleon structure functions from operator product expansion on the lattice. Phys. Rev. Lett., 118(24), 2017, 242001, 10.1103/PhysRevLett.118.242001 arXiv:1703.01153.[757] Alexandrou, Constantia, Cichy, Krzysztof, Constantinou, Martha, Jansen, Karl, Scapellato, Aurora, Steffens, Fernanda, Light-cone parton distribution functions from lattice QCD. Phys. Rev. Lett., 121(11), 2018, 112001, 10.1103/PhysRevLett.121.112001 arXiv:1803.02685.[758] Lin, Huey-Wen, Chen, Jiunn-Wei, Ji, Xiangdong, Jin, Luchang, Li, Ruizi, Liu, Yu-Sheng, Yang, Yi-Bo, Zhang, Jian-Hui, Zhao, Yong, Proton isovector helicity distribution on the lattice at physical pion mass. Phys. Rev. Lett., 121(24), 2018, 242003, 10.1103/PhysRevLett.121.242003 arXiv:1807.07431.[759] Alexandrou, Constantia, Cichy, Krzysztof, Constantinou, Martha, Jansen, Karl, Scapellato, Aurora, Steffens, Fernanda, Transversity parton distribution functions from lattice QCD. Phys. Rev. D, 98(9), 2018, 091503, 10.1103/PhysRevD.98.091503 arXiv:1807.00232.[760] Alexandrou, Constantia, Cichy, Krzysztof, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Jansen, Karl, Scapellato, Aurora, Steffens, Fernanda, Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point. Phys. Rev. D, 99(11), 2019, 114504, 10.1103/PhysRevD.99.114504 arXiv:1902.00587.[761] Joó, Bálint, Karpie, Joseph, Orginos, Kostas, Radyushkin, Anatoly V., Richards, David G., Zafeiropoulos, Savvas, Parton distribution functions from Ioffe time pseudodistributions from lattice calculations: approaching the physical point. Phys. Rev. Lett., 125(23), 2020, 232003, 10.1103/PhysRevLett.125.232003 arXiv:2004.01687.[762] Bhat, Manjunath, Cichy, Krzysztof, Constantinou, Martha, Scapellato, Aurora, Flavor nonsinglet parton distribution functions from lattice QCD at physical quark masses via the pseudodistribution approach. Phys. Rev. D, 103(3), 2021, 034510, 10.1103/PhysRevD.103.034510 arXiv:2005.02102.[763] Egerer, Colin, et al. Transversity parton distribution function of the nucleon using the pseudodistribution approach. Phys. Rev. D, 105(3), 2022, 034507, 10.1103/PhysRevD.105.034507 arXiv:2111.01808.[764] Gao, Xiang, Hanlon, Andrew D., Mukherjee, Swagato, Petreczky, Peter, Scior, Philipp, Syritsyn, Sergey, Zhao, Yong, Lattice QCD determination of the Bjorken-x dependence of parton distribution functions at next-to-next-to-leading order. Phys. Rev. Lett., 128(14), 2022, 142003, 10.1103/PhysRevLett.128.142003 arXiv:2112.02208.[765] Yao, Fei, et al. Nucleon transversity distribution in the continuum and physical mass limit from lattice QCD. arXiv:2208.08008, 8 2022.[766] Khan, Tanjib, et al. Unpolarized gluon distribution in the nucleon from lattice quantum chromodynamics. Phys. Rev. D, 104(9), 2021, 094516, 10.1103/PhysRevD.104.094516 arXiv:2107.08960.[767] Fan, Zhouyou, Lin, Huey-Wen, Gluon parton distribution of the pion from lattice QCD. Phys. Lett. B, 823, 2021, 136778, 10.1016/j.physletb.2021.136778 arXiv:2104.06372.[768] Salas-Chavira, Alejandro, Fan, Zhouyou, Lin, Huey-Wen, First glimpse into the kaon gluon parton distribution using lattice QCD. Phys. Rev. D, 106(9), 2022, 094510, 10.1103/PhysRevD.106.094510 arXiv:2112.03124.[769] Egerer, Colin, et al. Toward the determination of the gluon helicity distribution in the nucleon from lattice quantum chromodynamics. Phys. Rev. D, 106(9), 2022, 094511, 10.1103/PhysRevD.106.094511 arXiv:2207.08733.[770] Egerer, Colin, Edwards, Robert G., Orginos, Kostas, Richards, David G., Distillation at high-momentum. Phys. Rev. D, 103(3), 2021, 034502, 10.1103/PhysRevD.103.034502 arXiv:2009.10691.[771] Alexandrou, Constantia, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Jansen, Karl, Manigrasso, Floriano, Flavor decomposition for the proton helicity parton distribution functions. Phys. Rev. Lett., 126(10), 2021, 102003, 10.1103/PhysRevLett.126.102003 arXiv:2009.13061.[772] Lin, Huey-Wen, Nucleon tomography and generalized parton distribution at physical pion mass from lattice QCD. Phys. Rev. Lett., 127(18), 2021, 182001, 10.1103/PhysRevLett.127.182001 arXiv:2008.12474.[773] Alexandrou, Constantia, Cichy, Krzysztof, Constantinou, Martha, Hadjiyiannakou, Kyriakos, Jansen, Karl, Scapellato, Aurora, Steffens, Fernanda, Transversity GPDs of the proton from lattice QCD. Phys. Rev. D, 105(3), 2022, 034501, 10.1103/PhysRevD.105.034501 arXiv:2108.10789.[774] Lin, Huey-Wen, Nucleon helicity generalized parton distribution at physical pion mass from lattice QCD. Phys. Lett. B, 824, 2022, 136821, 10.1016/j.physletb.2021.136821 arXiv:2112.07519.[775] Musch, B.U., Hagler, Ph., Engelhardt, M., Negele, J.W., Schafer, A., Sivers and Boer-Mulders observables from lattice QCD. Phys. Rev. D, 85, 2012, 094510, 10.1103/PhysRevD.85.094510 arXiv:1111.4249.[776] Engelhardt, M., Hägler, P., Musch, B., Negele, J., Schäfer, A., Lattice QCD study of the Boer-Mulders effect in a pion. Phys. Rev. D, 93(5), 2016, 054501, 10.1103/PhysRevD.93.054501 arXiv:1506.07826.[777] Yoon, Boram, Engelhardt, Michael, Gupta, Rajan, Bhattacharya, Tanmoy, Green, Jeremy R., Musch, Bernhard U., Negele, John W., Pochinsky, Andrew V., Schäfer, Andreas, Syritsyn, Sergey N., Nucleon transverse momentum-dependent parton distributions in lattice QCD: renormalization patterns and discretization effects. Phys. Rev. D, 96(9), 2017, 094508, 10.1103/PhysRevD.96.094508 arXiv:1706.03406.[778] Engelhardt, Michael, Hasan, Nesreen, Izubuchi, Taku, Kallidonis, Christos, Krieg, Stefan, Meinel, Stefan, Negele, John, Pochinsky, Andrew, Silvi, Giorgio, Syritsyn, Sergey, Transverse momentum-dependent parton distributions for longitudinally polarized nucleons from domain wall fermion calculations at the physical pion mass. PoS, LATTICE2022, 2023, 103, 10.22323/1.430.0103 arXiv:2301.06118.[779] Ji, Xiangdong, Sun, Peng, Xiong, Xiaonu, Yuan, Feng, Soft factor subtraction and transverse momentum dependent parton distributions on the lattice. Phys. Rev. D, 91, 2015, 074009, 10.1103/PhysRevD.91.074009 arXiv:1405.7640.[780] Ji, Xiangdong, Jin, Lu-Chang, Yuan, Feng, Zhang, Jian-Hui, Zhao, Yong, Transverse momentum dependent parton quasidistributions. Phys. Rev. D, 99(11), 2019, 114006, 10.1103/PhysRevD.99.114006 arXiv:1801.05930.[781] Ji, Xiangdong, Liu, Yizhuang, Liu, Yu-Sheng, TMD soft function from large-momentum effective theory. Nucl. Phys. B, 955, 2020, 115054, 10.1016/j.nuclphysb.2020.115054 arXiv:1910.11415.[782] Ji, Xiangdong, Liu, Yizhuang, Liu, Yu-Sheng, Transverse-momentum-dependent parton distribution functions from large-momentum effective theory. Phys. Lett. B, 811, 2020, 135946, 10.1016/j.physletb.2020.135946 arXiv:1911.03840.[783] Ji, Xiangdong, Liu, Yizhuang, Schäfer, Andreas, Yuan, Feng, Single transverse-spin asymmetry and Sivers function in large momentum effective theory. Phys. Rev. D, 103(7), 2021, 074005, 10.1103/PhysRevD.103.074005 arXiv:2011.13397.[784] Ebert, Markus A., Stewart, Iain W., Zhao, Yong, Towards quasi-transverse momentum dependent PDFs computable on the lattice. J. High Energy Phys., 09, 2019, 037, 10.1007/JHEP09(2019)037 arXiv:1901.03685.[785] Ebert, Markus A., Stewart, Iain W., Zhao, Yong, Renormalization and matching for the Collins-Soper kernel from lattice QCD. J. High Energy Phys., 03, 2020, 099, 10.1007/JHEP03(2020)099 arXiv:1910.08569.[786] Ebert, Markus A., Schindler, Stella T., Stewart, Iain W., Zhao, Yong, One-loop matching for spin-dependent quasi-TMDs. J. High Energy Phys., 09, 2020, 099, 10.1007/JHEP09(2020)099 arXiv:2004.14831.[787] Shanahan, Phiala, Wagman, Michael L., Zhao, Yong, Nonperturbative renormalization of staple-shaped Wilson line operators in lattice QCD. Phys. Rev. D, 101(7), 2020, 074505, 10.1103/PhysRevD.101.074505 arXiv:1911.00800.[788] Shanahan, Phiala, Wagman, Michael, Zhao, Yong, Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D, 102(1), 2020, 014511, 10.1103/PhysRevD.102.014511 arXiv:2003.06063.[789] Shanahan, Phiala, Wagman, Michael, Zhao, Yong, Lattice QCD calculation of the Collins-Soper kernel from quasi-TMDPDFs. Phys. Rev. D, 104(11), 2021, 114502, 10.1103/PhysRevD.104.114502 arXiv:2107.11930.[790] Li, Yuan, et al. Lattice QCD study of transverse-momentum dependent soft function. Phys. Rev. Lett., 128(6), 2022, 062002, 10.1103/PhysRevLett.128.062002 arXiv:2106.13027.[791] Chu, Min-Huan, et al. Nonperturbative determination of the Collins-Soper kernel from quasitransverse-momentum-dependent wave functions. Phys. Rev. D, 106(3), 2022, 034509, 10.1103/PhysRevD.106.034509 arXiv:2204.00200.[792] Ebert, Markus A., Schindler, Stella T., Stewart, Iain W., Zhao, Yong, Factorization connecting continuum & lattice TMDs. J. High Energy Phys., 04, 2022, 178, 10.1007/JHEP04(2022)178 arXiv:2201.08401.[793] Schindler, Stella T., Stewart, Iain W., Zhao, Yong, One-loop matching for gluon lattice TMDs. J. High Energy Phys., 08, 2022, 084, 10.1007/JHEP08(2022)084 arXiv:2205.12369.[794] Zhang, Kuan, Ji, Xiangdong, Yang, Yi-Bo, Yao, Fei, Zhang, Jian-Hui, Renormalization of transverse-momentum-dependent parton distribution on the lattice. Phys. Rev. Lett., 129(8), 2022, 082002, 10.1103/PhysRevLett.129.082002 arXiv:2205.13402.[795] Zhang, Qi-An, et al. Lattice-QCD calculations of TMD soft function through large-momentum effective theory. Phys. Rev. Lett., 125(19), 2020, 192001, 10.22323/1.396.0477 arXiv:2005.14572.[796] Ebert, Markus A., Stewart, Iain W., Zhao, Yong, Determining the nonperturbative Collins-Soper kernel from lattice QCD. Phys. Rev. D, 99(3), 2019, 034505, 10.1103/PhysRevD.99.034505 arXiv:1811.00026.[797] Schlemmer, Maximilian, Vladimirov, Alexey, Zimmermann, Christian, Engelhardt, Michael, Schäfer, Andreas, Determination of the Collins-Soper kernel from lattice QCD. J. High Energy Phys., 08, 2021, 004, 10.1007/JHEP08(2021)004 arXiv:2103.16991.[798] Zhang, Rui, Lin, Huey-Wen, Yoon, Boram, Probing nucleon strange and charm distributions with lattice QCD. Phys. Rev. D, 104(9), 2021, 094511, 10.1103/PhysRevD.104.094511 arXiv:2005.01124.[799] He, Jin-Chen, Chu, Min-Huan, Hua, Jun, Ji, Xiangdong, Schäfer, Andreas, Su, Yushan, Wang, Wei, Yang, Yibo, Zhang, Jian-Hui, Zhang, Qi-An, Unpolarized transverse-momentum-dependent parton distributions of the nucleon from lattice QCD. arXiv:2211.02340, 11 2022.[800] Luscher, M., Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys. 105 (1986), 153–188, 10.1007/BF01211097.[801] Dudek, Jozef J., Edwards, Robert G., Wilson, David J., An a

0

resonance in strongly coupled πη, KK‾ scattering from lattice QCD. Phys. Rev. D, 93(9), 2016, 094506, 10.1103/PhysRevD.93.094506 arXiv:1602.05122.[802] Briceno, Raul A., Dudek, Jozef J., Edwards, Robert G., Wilson, David J., Isoscalar ππ,KK‾,ηη scattering and the σ,f

0

,f

2

mesons from QCD. Phys. Rev. D, 97(5), 2018, 054513, 10.1103/PhysRevD.97.054513 arXiv:1708.06667.[803] Woss, Antoni J., Thomas, Christopher E., Dudek, Jozef J., Edwards, Robert G., Wilson, David J., b

1

resonance in coupled πω, πϕ scattering from lattice QCD. Phys. Rev. D, 100(5), 2019, 054506, 10.1103/PhysRevD.100.054506 arXiv:1904.04136.[804] Bulava, John, Hanlon, Andrew D., Horz, Ben, Morningstar, Colin, Nicholson, Amy, Romero-Lopez, Fernando, Skinner, Sarah, Vranas, Pavlos, Walker-Loud, Andre, Elastic nucleon-pion scattering at m

π

=200 MeV from lattice QCD. Nucl. Phys. B, 987, 2023, 116105, 10.1016/j.nuclphysb.2023.116105 arXiv:2208.03867.[805] Briceño, Raúl A., Hansen, Maxwell T., Walker-Loud, André, Multichannel 1 → 2 transition amplitudes in a finite volume. Phys. Rev. D, 91(3), 2015, 034501, 10.1103/PhysRevD.91.034501 arXiv:1406.5965.[806] Briceno, Raul A., Dudek, Jozef J., Edwards, Robert G., Shultz, Christian J., Thomas, Christopher E., Wilson, David J., The resonant π+γ→π+π0 amplitude from quantum chromodynamics. Phys. Rev. Lett., 115, 2015, 242001, 10.1103/PhysRevLett.115.242001 arXiv:1507.06622.[807] Alexandrou, Constantia, Leskovec, Luka, Meinel, Stefan, Negele, John, Paul, Srijit, Petschlies, Marcus, Pochinsky, Andrew, Rendon, Gumaro, Syritsyn, Sergey, πγ→ππ transition and the ρ radiative decay width from lattice QCD. Phys. Rev. D, 98(7), 2018, 074502, 10.1103/PhysRevD.98.074502 Phys. Rev. D, 105, 2022, 019902 (Erratum) arXiv:1807.08357.[808] Radhakrishnan, Archana, Dudek, Jozef J., Edwards, Robert G., Radiative decay of the resonant K* and the γK→Kπ amplitude from lattice QCD. Phys. Rev. D, 106(11), 2022, 114513, 10.1103/PhysRevD.106.114513 arXiv:2208.13755.[809] Hansen, Maxwell T., Sharpe, Stephen R., Lattice QCD and three-particle decays of resonances. Annu. Rev. Nucl. Part. Sci. 69 (2019), 65–107, 10.1146/annurev-nucl-101918-023723 arXiv:1901.00483.[810] Mai, Maxim, Döring, Michael, Rusetsky, Akaki, Multi-particle systems on the lattice and chiral extrapolations: a brief review. Eur. Phys. J. Spec. Top. 230:6 (2021), 1623–1643, 10.1140/epjs/s11734-021-00146-5 arXiv:2103.00577.[811] Blanton, Tyler D., Romero-López, Fernando, Sharpe, Stephen R., I=3 three-pion scattering amplitude from lattice QCD. Phys. Rev. Lett., 124(3), 2020, 032001, 10.1103/PhysRevLett.124.032001 arXiv:1909.02973.[812] Hansen, Maxwell T., Briceño, Raul A., Edwards, Robert G., Thomas, Christopher E., Wilson, David J., Energy-dependent π+π+π+ scattering amplitude from QCD. Phys. Rev. Lett., 126, 2021, 012001, 10.1103/PhysRevLett.126.012001 arXiv:2009.04931.[813] Blanton, Tyler D., Hanlon, Andrew D., Hörz, Ben, Morningstar, Colin, Romero-López, Fernando, Sharpe, Stephen R., Interactions of two and three mesons including higher partial waves from lattice QCD. J. High Energy Phys., 10, 2021, 023, 10.1007/JHEP10(2021)023 arXiv:2106.05590.[814] Brett, Ruairí, Culver, Chris, Mai, Maxim, Alexandru, Andrei, Döring, Michael, Lee, Frank X., Three-body interactions from the finite-volume QCD spectrum. Phys. Rev. D, 104(1), 2021, 014501, 10.1103/PhysRevD.104.014501 arXiv:2101.06144.[815] Borsanyi, Szabolcs, Fodor, Zoltan, Guenther, Jana N., Kara, Ruben, Katz, Sandor D., Parotto, Paolo, Pasztor, Attila, Ratti, Claudia, Szabo, Kalman K., QCD crossover at finite chemical potential from lattice simulations. Phys. Rev. Lett., 125(5), 2020, 052001, 10.1103/PhysRevLett.125.052001 arXiv:2002.02821.[816] Bazavov, A., et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795 (2019), 15–21, 10.1016/j.physletb.2019.05.013 arXiv:1812.08235.[817] Ding, H.T., et al. Chiral phase transition temperature in (2+1)-flavor QCD. Phys. Rev. Lett., 123(6), 2019, 062002, 10.1103/PhysRevLett.123.062002 arXiv:1903.04801.[818] Borsanyi, Szabolcs, Endrodi, Gergely, Fodor, Zoltan, Jakovac, Antal, Katz, Sandor D., Krieg, Stefan, Ratti, Claudia, Szabo, Kalman K., The QCD equation of state with dynamical quarks. J. High Energy Phys., 11, 2010, 077, 10.1007/JHEP11(2010)077 arXiv:1007.2580.[819] Borsanyi, Szabocls, Fodor, Zoltan, Hoelbling, Christian, Katz, Sandor D., Krieg, Stefan, Szabo, Kalman K., Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730 (2014), 99–104, 10.1016/j.physletb.2014.01.007 arXiv:1309.5258.[820] Bazavov, A., et al. Equation of state in (2+1)-flavor QCD. Phys. Rev. D, 90, 2014, 094503, 10.1103/PhysRevD.90.094503 arXiv:1407.6387.[821] Bazavov, A., et al. The QCD equation of state to O(μ

B

6) from lattice QCD. Phys. Rev. D, 95(5), 2017, 054504, 10.1103/PhysRevD.95.054504 arXiv:1701.04325.[822] Guenther, J.N., Bellwied, R., Borsanyi, S., Fodor, Z., Katz, S.D., Pasztor, A., Ratti, C., Szabó, K.K., The QCD equation of state at finite density from analytical continuation. Nucl. Phys. A 967 (2017), 720–723, 10.1016/j.nuclphysa.2017.05.044 arXiv:1607.02493.[823] Bollweg, D., Clarke, D.A., Goswami, J., Kaczmarek, O., Karsch, F., Mukherjee, Swagato, Petreczky, P., Schmidt, C., Sharma, Sipaz, Equation of state and speed of sound of (2+1)-flavor QCD in strangeness-neutral matter at non-vanishing net baryon-number density. arXiv:2212.09043, 12 2022.[824] Borsányi, S., Fodor, Z., Guenther, J.N., Kara, R., Katz, S.D., Parotto, P., Pásztor, A., Ratti, C., Szabó, K.K., Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme. Phys. Rev. Lett., 126(23), 2021, 232001, 10.1103/PhysRevLett.126.232001 arXiv:2102.06660.[825] Vovchenko, Volodymyr, Steinheimer, Jan, Philipsen, Owe, Stoecker, Horst, Cluster expansion model for QCD baryon number fluctuations: no phase transition at μ

B

/T<π. Phys. Rev. D, 97(11), 2018, 114030, 10.1103/PhysRevD.97.114030 arXiv:1711.01261.[826] Borsanyi, Szabolcs, Guenther, Jana N., Kara, Ruben, Fodor, Zoltan, Parotto, Paolo, Pasztor, Attila, Ratti, Claudia, Szabo, Kalman K., Resummed lattice QCD equation of state at finite baryon density: strangeness neutrality and beyond. Phys. Rev. D, 105(11), 2022, 114504, 10.1103/PhysRevD.105.114504 arXiv:2202.05574.[827] Karthein, J.M., Mroczek, D., Acuna, A.R. Nava, Noronha-Hostler, J., Parotto, P., Price, D.R.P., Ratti, C., Strangeness-neutral equation of state for QCD with a critical point. Eur. Phys. J. Plus, 136(6), 2021, 621, 10.1140/epjp/s13360-021-01615-5 arXiv:2103.08146.[828] Ding, H.T., Francis, A., Kaczmarek, O., Karsch, F., Satz, H., Soeldner, W., Charmonium properties in hot quenched lattice QCD. Phys. Rev. D, 86, 2012, 014509, 10.1103/PhysRevD.86.014509 arXiv:1204.4945.[829] Francis, A., Kaczmarek, O., Laine, M., Neuhaus, T., Ohno, H., Nonperturbative estimate of the heavy quark momentum diffusion coefficient. Phys. Rev. D, 92(11), 2015, 116003, 10.1103/PhysRevD.92.116003 arXiv:1508.04543.[830] Banerjee, D., Datta, S., Laine, M., Lattice study of a magnetic contribution to heavy quark momentum diffusion. J. High Energy Phys., 08, 2022, 128, 10.1007/JHEP08(2022)128 arXiv:2204.14075.[831] Brambilla, Nora, Leino, Viljami, Petreczky, Peter, Vairo, Antonio, Lattice QCD constraints on the heavy quark diffusion coefficient. Phys. Rev. D, 102(7), 2020, 074503, 10.1103/PhysRevD.102.074503 arXiv:2007.10078.[832] https://science.osti.gov/ascr/Facilities/Accessing-ASCR-Facilities/ALCC.[833] https://www.alcf.anl.gov/science/incite-allocation-program.[834] https://www.scidac.gov.[835] Brambilla, Nora, Escobedo, Miguel A., Soto, Joan, Vairo, Antonio, Quarkonium suppression in heavy-ion collisions: an open quantum system approach. Phys. Rev. D, 96(3), 2017, 034021, 10.1103/PhysRevD.96.034021 arXiv:1612.07248.[836] Yao, Xiaojun, Mehen, Thomas, Quarkonium semiclassical transport in quark-gluon plasma: factorization and quantum correction. J. High Energy Phys., 02, 2021, 062, 10.1007/JHEP02(2021)062 arXiv:2009.02408.[837] Eller, Alexander M., Ghiglieri, Jacopo, Moore, Guy D., Thermal heavy quark self-energy from Euclidean correlators. Phys. Rev. D, 99(9), 2019, 094042, 10.1103/PhysRevD.99.094042 Phys. Rev. D, 102, 2020, 039901 (Erratum) arXiv:1903.08064.[838] Scheihing-Hitschfeld, Bruno, Yao, Xiaojun, Gauge invariance of non-Abelian field strength correlators: the axial gauge puzzle. Phys. Rev. Lett., 130(5), 2023, 052302, 10.1103/PhysRevLett.130.052302 arXiv:2205.04477.[839] Moch, S., Vermaseren, J.A.M., Vogt, A., The three loop splitting functions in QCD: the nonsinglet case. Nucl. Phys. B 688 (2004), 101–134, 10.1016/j.nuclphysb.2004.03.030 arXiv:hep-ph/0403192.[840] Vogt, A., Moch, S., Vermaseren, J.A.M., The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B 691 (2004), 129–181, 10.1016/j.nuclphysb.2004.04.024 arXiv:hep-ph/0404111.[841] Moch, S., Vermaseren, J.A.M., Vogt, A., The three-loop splitting functions in QCD: the helicity-dependent case. Nucl. Phys. B 889 (2014), 351–400, 10.1016/j.nuclphysb.2014.10.016 arXiv:1409.5131.[842] Zijlstra, E.B., van Neerven, W.L., Order alpha-s**2 QCD corrections to the deep inelastic proton structure functions F2 and F(L). Nucl. Phys. B 383 (1992), 525–574, 10.1016/0550-3213(92)90087-R.[843] Zijlstra, E.B., van Neerven, W.L., Order-α

s

2 corrections to the polarized structure function g

1

(x,Q2). Nucl. Phys. B 417 (1994), 61–100, 10.1016/0550-3213(94)90538-X Nucl. Phys. B, 426, 1994, 245 (Erratum) Nucl. Phys. B 773 (2007), 105–106 (Erratum)Nucl. Phys. B, 501, 1997, 599 (Erratum).[844] Borsa, Ignacio, de Florian, Daniel, Pedron, Iván, The full set of polarized deep inelastic scattering structure functions at NNLO accuracy. Eur. Phys. J. C, 82(12), 2022, 1167, 10.1140/epjc/s10052-022-11140-z arXiv:2210.12014.[845] Currie, James, Gehrmann, Thomas, Huss, Alexander, Niehues, Jan, NNLO QCD corrections to jet production in deep inelastic scattering. J. High Energy Phys., 07, 2017, 018, 10.1007/JHEP07(2017)018 J. High Energy Phys., 12, 2020, 042 (Erratum) arXiv:1703.05977.[846] Currie, J., Gehrmann, T., Glover, E.W.N., Huss, A., Niehues, J., Vogt, A., N3LO corrections to jet production in deep inelastic scattering using the projection-to-born method. J. High Energy Phys., 05, 2018, 209, 10.1007/JHEP05(2018)209 arXiv:1803.09973.[847] Boughezal, Radja, Petriello, Frank, Xing, Hongxi, Inclusive jet production as a probe of polarized parton distribution functions at a future EIC. Phys. Rev. D, 98(5), 2018, 054031, 10.1103/PhysRevD.98.054031 arXiv:1806.07311.[848] Borsa, Ignacio, de Florian, Daniel, Pedron, Iván, Jet production in polarized deep inelastic scattering at next-to-next-to-leading order. Phys. Rev. Lett., 125(8), 2020, 082001, 10.1103/PhysRevLett.125.082001 arXiv:2005.10705.[849] Bodwin, Geoffrey T., Braaten, Eric, Lepage, G. Peter, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D 51 (1995), 1125–1171, 10.1103/PhysRevD.55.5853 Phys. Rev. D, 55, 1997, 5853 (Erratum) arXiv:hep-ph/9407339.[850] Brambilla, N., et al. Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C, 71, 2011, 1534, 10.1140/epjc/s10052-010-1534-9 arXiv:1010.5827.[851] Ma, Yan-Qing, Vogt, Ramona, Quarkonium production in an improved color evaporation model. Phys. Rev. D, 94(11), 2016, 114029, 10.1103/PhysRevD.94.114029 arXiv:1609.06042.[852] Cheung, Vincent, Vogt, Ramona, Polarized heavy quarkonium production in the color evaporation model. Phys. Rev. D, 95(7), 2017, 074021, 10.1103/PhysRevD.95.074021 arXiv:1702.07809.[853] Cheung, Vincent, Vogt, Ramona, Polarization of prompt J/ψ and ϒ(1S) production in the color evaporation model. Phys. Rev. D, 96(5), 2017, 054014, 10.1103/PhysRevD.96.054014 arXiv:1706.07686.[854] Cheung, Vincent, Vogt, Ramona, Production and polarization of prompt J/ψ in the improved color evaporation model using the k

T

-factorization approach. Phys. Rev. D, 98(11), 2018, 114029, 10.1103/PhysRevD.98.114029 arXiv:1808.02909.[855] Cheung, Vincent, Vogt, Ramona, Production and polarization of prompt ϒ(nS) in the improved color evaporation model using the k

T

-factorization approach. Phys. Rev. D, 99(3), 2019, 034007, 10.1103/PhysRevD.99.034007 arXiv:1811.11570.[856] Cheung, Vincent, Vogt, Ramona, Production and polarization of direct J/ψ to O(αs3) in the improved color evaporation model in collinear factorization. Phys. Rev. D, 104(9), 2021, 094026, 10.1103/PhysRevD.104.094026 arXiv:2102.09118.[857] Vogt, R., Heavy flavor azimuthal correlations in cold nuclear matter. Phys. Rev. C, 98(3), 2018, 034907, 10.1103/PhysRevC.98.034907 arXiv:1806.01904.[858] Vogt, R., bb‾ kinematic correlations in cold nuclear matter. Phys. Rev. C, 101(2), 2020, 024910, 10.1103/PhysRevC.101.024910 arXiv:1908.05320.[859] Wu, Xing-Gang, Shen, Jian-Ming, Du, Bo-Lun, Huang, Xu-Dong, Wang, Sheng-Quan, Brodsky, Stanley J., The QCD renormalization group equation and the elimination of fixed-order scheme-and-scale ambiguities using the principle of maximum conformality. Prog. Part. Nucl. Phys., 108, 2019, 103706, 10.1016/j.ppnp.2019.05.003 arXiv:1903.12177.[860] Braun, V.M., Manashov, A.N., Moch, S., Strohmaier, M., Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics. J. High Energy Phys., 06, 2017, 037, 10.1007/JHEP06(2017)037 arXiv:1703.09532.[861] Braun, V.M., Manashov, A.N., Moch, S., Schoenleber, J., Two-loop coefficient function for DVCS: vector contributions. J. High Energy Phys., 09, 2020, 117, 10.1007/JHEP09(2020)117 J. High Energy Phys., 02, 2022, 115 (Erratum) arXiv:2007.06348.[862] Braun, V.M., Ji, Yao, Schoenleber, Jakob, Deeply virtual Compton scattering at next-to-next-to-leading order. Phys. Rev. Lett., 129(17), 2022, 172001, 10.1103/PhysRevLett.129.172001 arXiv:2207.06818.[863] Belitsky, Andrei V., Mueller, Dieter, Kirchner, A., Theory of deeply virtual Compton scattering on the nucleon. Nucl. Phys. B 629 (2002), 323–392, 10.1016/S0550-3213(02)00144-X arXiv:hep-ph/0112108.[864] Berthou, B., et al. PARTONS: PARtonic tomography of nucleon software: a computing framework for the phenomenology of generalized parton distributions. Eur. Phys. J. C, 78(6), 2018, 478, 10.1140/epjc/s10052-018-5948-0 arXiv:1512.06174.[865] Kumericki, Kresimir, Liuti, Simonetta, Moutarde, Herve, GPD phenomenology and DVCS fitting: entering the high-precision era. Eur. Phys. J. A, 52(6), 2016, 157, 10.1140/epja/i2016-16157-3 arXiv:1602.02763.[866] Kriesten, Brandon, Liuti, Simonetta, Calero-Diaz, Liliet, Keller, Dustin, Meyer, Andrew, Goldstein, Gary R., Gonzalez-Hernandez, J. Osvaldo, Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments. Phys. Rev. D, 101(5), 2020, 054021, 10.1103/PhysRevD.101.054021 arXiv:1903.05742.[867] Kriesten, Brandon, Liuti, Simonetta, Theory of deeply virtual Compton scattering off the unpolarized proton. Phys. Rev. D, 105(1), 2022, 016015, 10.1103/PhysRevD.105.016015 arXiv:2004.08890.[868] Grigsby, Jake, Kriesten, Brandon, Hoskins, Joshua, Liuti, Simonetta, Alonzi, Peter, Burkardt, Matthias, Deep learning analysis of deeply virtual exclusive photoproduction. Phys. Rev. D, 104(1), 2021, 016001, 10.1103/PhysRevD.104.016001 arXiv:2012.04801.[869] Kriesten, Brandon, Velie, Philip, Yeats, Emma, Lopez, Fernanda Yepez, Liuti, Simonetta, Parametrization of quark and gluon generalized parton distributions in a dynamical framework. Phys. Rev. D, 105(5), 2022, 056022, 10.1103/PhysRevD.105.056022 arXiv:2101.01826.[870] Guo, Yuxun, Ji, Xiangdong, Shiells, Kyle, Higher-order kinematical effects in deeply virtual Compton scattering. J. High Energy Phys., 12, 2021, 103, 10.1007/JHEP12(2021)103 arXiv:2109.10373.[871] Shiells, Kyle, Guo, Yuxun, Ji, Xiangdong, On extraction of twist-two Compton form factors from DVCS observables through harmonic analysis. J. High Energy Phys., 08, 2022, 048, 10.1007/JHEP08(2022)048 arXiv:2112.15144.[872] Guo, Yuxun, Ji, Xiangdong, Kriesten, Brandon, Shiells, Kyle, Twist-three cross-sections in deeply virtual Compton scattering. J. High Energy Phys., 06, 2022, 096, 10.1007/JHEP06(2022)096 arXiv:2202.11114.[873] Bacchetta, Alessandro, Delcarro, Filippo, Pisano, Cristian, Radici, Marco, Signori, Andrea, Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production. J. High Energy Phys., 06, 2017, 081, 10.1007/JHEP06(2017)081 J. High Energy Phys., 06, 2019, 051 (Erratum) arXiv:1703.10157.[874] Scimemi, Ignazio, Vladimirov, Alexey, Analysis of vector boson production within TMD factorization. Eur. Phys. J. C, 78(2), 2018, 89, 10.1140/epjc/s10052-018-5557-y arXiv:1706.01473.[875] Scimemi, Ignazio, Vladimirov, Alexey, Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum. J. High Energy Phys., 06, 2020, 137, 10.1007/JHEP06(2020)137 arXiv:1912.06532.[876] Bacchetta, Alessandro, Bertone, Valerio, Bissolotti, Chiara, Bozzi, Giuseppe, Cerutti, Matteo, Piacenza, Fulvio, Radici, Marco, Signori, Andrea, Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data. J. High Energy Phys., 10, 2022, 127, 10.1007/JHEP10(2022)127 arXiv:2206.07598.[877] Bailey, S., Cridge, T., Harland-Lang, L.A., Martin, A.D., Thorne, R.S., Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C, 81(4), 2021, 341, 10.1140/epjc/s10052-021-09057-0 arXiv:2012.04684.[878] Ball, Richard D., et al. The path to proton structure at 1% accuracy. Eur. Phys. J. C, 82(5), 2022, 428, 10.1140/epjc/s10052-022-10328-7 arXiv:2109.02653.[879] Barry, P.C., Ji, Chueng-Ryong, Sato, N., Melnitchouk, W., Global QCD analysis of pion parton distributions with threshold resummation. Phys. Rev. Lett., 127(23), 2021, 232001, 10.1103/PhysRevLett.127.232001 arXiv:2108.05822.[880] Barry, P.C., Sato, N., Melnitchouk, W., Ji, Chueng-Ryong, First Monte Carlo global QCD analysis of pion parton distributions. Phys. Rev. Lett., 121(15), 2018, 152001, 10.1103/PhysRevLett.121.152001 arXiv:1804.01965.[881] Bauer, Christian W., Fleming, Sean, Pirjol, Dan, Stewart, Iain W., An effective field theory for collinear and soft gluons: heavy to light decays. Phys. Rev. D, 63, 2001, 114020, 10.1103/PhysRevD.63.114020 arXiv:hep-ph/0011336.[882] Bauer, Christian W., Pirjol, Dan, Stewart, Iain W., Soft collinear factorization in effective field theory. Phys. Rev. D, 65, 2002, 054022, 10.1103/PhysRevD.65.054022 arXiv:hep-ph/0109045.[883] Bauer, Christian W., Fleming, Sean, Pirjol, Dan, Rothstein, Ira Z., Stewart, Iain W., Hard scattering factorization from effective field theory. Phys. Rev. D, 66, 2002, 014017, 10.1103/PhysRevD.66.014017 arXiv:hep-ph/0202088.[884] Ebert, Markus A., Gao, Anjie, Stewart, Iain W., Factorization for azimuthal asymmetries in SIDIS at next-to-leading power. J. High Energy Phys., 06, 2022, 007, 10.1007/JHEP06(2022)007 arXiv:2112.07680.[885] Gribov, L.V., Levin, E.M., Ryskin, M.G., Semihard processes in QCD. Phys. Rep. 100 (1983), 1–150, 10.1016/0370-1573(83)90022-4.[886] Mueller, Alfred H., Qiu, Jian-wei, Gluon recombination and shadowing at small values of x. Nucl. Phys. B 268 (1986), 427–452, 10.1016/0550-3213(86)90164-1.[887] McLerran, Larry D., Venugopalan, Raju, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49 (1994), 2233–2241, 10.1103/PhysRevD.49.2233 arXiv:hep-ph/9309289.[888] McLerran, Larry D., Venugopalan, Raju, Gluon distribution functions for very large nuclei at small transverse momentum. Phys. Rev. D 49 (1994), 3352–3355, 10.1103/PhysRevD.49.3352 arXiv:hep-ph/9311205.[889] Iancu, Edmond, Venugopalan, Raju, The Color glass condensate and high-energy scattering in QCD., 3 2003, 249–3363 https://doi.org/10.1142/9789812795533_0005 arXiv:hep-ph/0303204.[890] Kovchegov, Yuri V., Levin, Eugene, Quantum Chromodynamics at High Energy. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, vol. 33, 11 2022, Cambridge University Press, 10.1017/9781009291446.[891] Balitsky, I., Operator expansion for high-energy scattering. Nucl. Phys. B 463 (1996), 99–160, 10.1016/0550-3213(95)00638-9 arXiv:hep-ph/9509348.[892] Kovchegov, Yuri V., Mueller, Alfred H., Gluon production in current nucleus and nucleon - nucleus collisions in a quasiclassical approximation. Nucl. Phys. B 529 (1998), 451–479, 10.1016/S0550-3213(98)00384-8 arXiv:hep-ph/9802440.[893] Jalilian-Marian, Jamal, Kovner, Alex, Leonidov, Andrei, Weigert, Heribert, The Wilson renormalization group for low x physics: towards the high density regime. Phys. Rev. D, 59, 1998, 014014, 10.1103/PhysRevD.59.014014 arXiv:hep-ph/9706377.[894] Jalilian-Marian, Jamal, Kovner, Alex, Weigert, Heribert, The Wilson renormalization group for low x physics: gluon evolution at finite parton density. Phys. Rev. D, 59, 1998, 014015, 10.1103/PhysRevD.59.014015 arXiv:hep-ph/9709432.[895] Iancu, Edmond, Leonidov, Andrei, McLerran, Larry D., Nonlinear gluon evolution in the color glass condensate. 1. Nucl. Phys. A 692 (2001), 583–645, 10.1016/S0375-9474(01)00642-X arXiv:hep-ph/0011241.[896] Ferreiro, Elena, Iancu, Edmond, Leonidov, Andrei, McLerran, Larry, Nonlinear gluon evolution in the color glass condensate. 2. Nucl. Phys. A 703 (2002), 489–538, 10.1016/S0375-9474(01)01329-X arXiv:hep-ph/0109115.[897] Morreale, Astrid, Salazar, Farid, Mining for gluon saturation at colliders. Universe, 7(8), 2021, 312, 10.3390/universe7080312 arXiv:2108.08254.[898] Hatta, Yosh*taka, Xiao, Bo-Wen, Yuan, Feng, Probing the small-x gluon tomography in correlated hard diffractive dijet production in deep inelastic scattering. Phys. Rev. Lett., 116(20), 2016, 202301, 10.1103/PhysRevLett.116.202301 arXiv:1601.01585.[899] Kharzeev, Dmitri E., Levin, Eugene M., Deep inelastic scattering as a probe of entanglement. Phys. Rev. D, 95(11), 2017, 114008, 10.1103/PhysRevD.95.114008 arXiv:1702.03489.[900] Hagiwara, Yoshikazu, Hatta, Yosh*taka, Xiao, Bo-Wen, Yuan, Feng, Classical and quantum entropy of parton distributions. Phys. Rev. D, 97(9), 2018, 094029, 10.1103/PhysRevD.97.094029 arXiv:1801.00087.[901] Hentschinski, Martin, Kutak, Krzysztof, Straka, Robert, Maximally entangled proton and charged hadron multiplicity in deep inelastic scattering. Eur. Phys. J. C, 82(12), 2022, 1147, 10.1140/epjc/s10052-022-11122-1 arXiv:2207.09430.[902] Dvali, Gia, Venugopalan, Raju, Classicalization and unitarization of wee partons in QCD and gravity: the CGC-black hole correspondence. Phys. Rev. D, 105(5), 2022, 056026, 10.1103/PhysRevD.105.056026 arXiv:2106.11989.[903] Dumitru, Adrian, Kolbusz, Eric, Quark and gluon entanglement in the proton on the light cone at intermediate x. Phys. Rev. D, 105, 2022, 074030, 10.1103/PhysRevD.105.074030 arXiv:2202.01803.[904] Duan, Haowu, Kovner, Alex, Skokov, Vladimir V., Gluon quasiparticles and the CGC density matrix. Phys. Rev. D, 105(5), 2022, 056009, 10.1103/PhysRevD.105.056009 arXiv:2111.06475.[905] Berges, J., Boguslavski, K., Schlichting, S., Venugopalan, R., Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 114(6), 2015, 061601, 10.1103/PhysRevLett.114.061601 arXiv:1408.1670.[906] Prüfer, Maximilian, Kunkel, Philipp, Strobel, Helmut, Lannig, Stefan, Linnemann, Daniel, Schmied, Christian-Marcel, Berges, Jürgen, Gasenzer, Thomas, Oberthaler, Markus K., Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563:7730 (2018), 217–220, 10.1038/s41586-018-0659-0 arXiv:1805.11881.[907] Bhaduri, R.K., Models of the nucleon: from quarks to soliton., 1988.[908] Thomas, Anthony William, Weise, Wolfram, The Structure of the Nucleon. 2001, Wiley, Germany, 10.1002/352760314X.[909] Maris, Pieter, Roberts, Craig D., Dyson-Schwinger equations: a tool for hadron physics. Int. J. Mod. Phys. E 12 (2003), 297–365, 10.1142/S0218301303001326 arXiv:nucl-th/0301049.[910] Cloet, Ian C., Roberts, Craig D., Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77 (2014), 1–69, 10.1016/j.ppnp.2014.02.001 arXiv:1310.2651.[911] Schäfer, Thomas, Shuryak, Edward V., Instantons in QCD. Rev. Mod. Phys. 70 (1998), 323–426, 10.1103/RevModPhys.70.323 arXiv:hep-ph/9610451.[912] Brodsky, Stanley J., de Teramond, Guy F., Dosch, Hans Gunter, Erlich, Joshua, Light-front holographic QCD and emerging confinement. Phys. Rep. 584 (2015), 1–105, 10.1016/j.physrep.2015.05.001 arXiv:1407.8131.[913] Lan, Jiangshan, Mondal, Chandan, Jia, Shaoyang, Zhao, Xingbo, Vary, James P., Parton distribution functions from a light front Hamiltonian and QCD evolution for light mesons. Phys. Rev. Lett., 122(17), 2019, 172001, 10.1103/PhysRevLett.122.172001 arXiv:1901.11430.[914] Xu, Siqi, Mondal, Chandan, Lan, Jiangshan, Zhao, Xingbo, Li, Yang, Vary, James P., Nucleon structure from basis light-front quantization. Phys. Rev. D, 104(9), 2021, 094036, 10.1103/PhysRevD.104.094036 arXiv:2108.03909.[915] Arifi, Ahmad Jafar, Choi, Ho-Meoyng, Ji, Chueng-Ryong, Oh, Yongseok, Mixing effects on 1S and 2S state heavy mesons in the light-front quark model. Phys. Rev. D, 106(1), 2022, 014009, 10.1103/PhysRevD.106.014009 arXiv:2205.04075.[916] Choi, Ho-Meoyng, Ji, Chueng-Ryong, Li, Ziyue, Ryu, Hui-Young, Variational analysis of mass spectra and decay constants for ground state pseudoscalar and vector mesons in the light-front quark model. Phys. Rev. C, 92(5), 2015, 055203, 10.1103/PhysRevC.92.055203 arXiv:1502.03078.[917] Ji, Chueng-Ryong, Choi, Ho-Meoyng, New effective treatment of the light front nonvalence contribution in timelike exclusive processes. Phys. Lett. B, 513, 2001, 330, 10.1016/S0370-2693(01)00481-6 arXiv:hep-ph/0009281.[918] Pilloni, A., Fernandez-Ramirez, C., Jackura, A., Mathieu, V., Mikhasenko, M., Nys, J., Szczepaniak, A.P., Amplitude analysis and the nature of the Z

c

(3900). Phys. Lett. B 772 (2017), 200–209, 10.1016/j.physletb.2017.06.030 arXiv:1612.06490.[919] Alexeev, G.D., et al. Triangle singularity as the origin of the a

1

(1420). Phys. Rev. Lett., 127(8), 2021, 082501, 10.1103/PhysRevLett.127.082501 arXiv:2006.05342.[920] Albaladejo, M., Hiller Blin, A.N., Pilloni, A., Winney, D., Fernández-Ramírez, C., Mathieu, V., Szczepaniak, A., XYZ spectroscopy at electron-hadron facilities: exclusive processes. Phys. Rev. D, 102, 2020, 114010, 10.1103/PhysRevD.102.114010 arXiv:2008.01001.[921] Winney, D., Pilloni, A., Mathieu, V., Hiller Blin, A.N., Albaladejo, M., Smith, W.A., Szczepaniak, A., XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange. Phys. Rev. D, 106(9), 2022, 094009, 10.1103/PhysRevD.106.094009 arXiv:2209.05882.[922] Adler, C., et al. Centrality dependence of high p

T

hadron suppression in Au+Au collisions at s

NN

= 130-GeV. Phys. Rev. Lett., 89, 2002, 202301, 10.1103/PhysRevLett.89.202301 arXiv:nucl-ex/0206011.[923] Jeon, Sangyong, Moore, Guy D., Energy loss of leading partons in a thermal QCD medium. Phys. Rev. C, 71, 2005, 034901, 10.1103/PhysRevC.71.034901 arXiv:hep-ph/0309332.[924] Blaizot, Jean-Paul, Dominguez, Fabio, Iancu, Edmond, Mehtar-Tani, Yacine, Probabilistic picture for medium-induced jet evolution. J. High Energy Phys., 06, 2014, 075, 10.1007/JHEP06(2014)075 arXiv:1311.5823.[925] Blaizot, Jean-Paul, Iancu, Edmond, Mehtar-Tani, Yacine, Medium-induced QCD cascade: democratic branching and wave turbulence. Phys. Rev. Lett., 111, 2013, 052001, 10.1103/PhysRevLett.111.052001 arXiv:1301.6102.[926] Mehtar-Tani, Yacine, Schlichting, Soeren, Universal quark to gluon ratio in medium-induced parton cascade. J. High Energy Phys., 09, 2018, 144, 10.1007/JHEP09(2018)144 arXiv:1807.06181.[927] Schlichting, Soeren, Soudi, Ismail, Medium-induced fragmentation and equilibration of highly energetic partons. J. High Energy Phys., 07, 2021, 077, 10.1007/JHEP07(2021)077 arXiv:2008.04928.[928] Sievert, Matthew D., Vitev, Ivan, Yoon, Boram, A complete set of in-medium splitting functions to any order in opacity. Phys. Lett. B 795 (2019), 502–510, 10.1016/j.physletb.2019.06.019 arXiv:1903.06170.[929] Arnold, Peter, Gorda, Tyler, Iqbal, Shahin, The LPM effect in sequential bremsstrahlung: analytic results for sub-leading (single) logarithms. J. High Energy Phys., 04, 2022, 085, 10.1007/JHEP04(2022)085 arXiv:2112.05161.[930] Arnold, Peter, Gorda, Tyler, Iqbal, Shahin, The LPM effect in sequential bremsstrahlung: nearly complete results for QCD. J. High Energy Phys., 11, 2020, 053, 10.1007/JHEP11(2020)053 J. High Energy Phys., 05, 2022, 114 (Erratum) arXiv:2007.15018.[931] Mehtar-Tani, Yacine, Gluon bremsstrahlung in finite media beyond multiple soft scattering approximation. J. High Energy Phys., 07, 2019, 057, 10.1007/JHEP07(2019)057 arXiv:1903.00506.[932] Barata, João, Mehtar-Tani, Yacine, Soto-Ontoso, Alba, Tywoniuk, Konrad, Medium-induced radiative kernel with the improved opacity expansion. J. High Energy Phys., 09, 2021, 153, 10.1007/JHEP09(2021)153 arXiv:2106.07402.[933] Tachibana, Yasuki, Hirano, Tetsufumi, Interplay between Mach cone and radial expansion and its signal in γ-jet events. Phys. Rev. C, 93(5), 2016, 054907, 10.1103/PhysRevC.93.054907 arXiv:1510.06966.[934] Casalderrey-Solana, Jorge, Gulhan, Doga, Milhano, Guilherme, Pablos, Daniel, Rajagopal, Krishna, Angular structure of jet quenching within a hybrid strong/weak coupling model. J. High Energy Phys., 03, 2017, 135, 10.1007/JHEP03(2017)135 arXiv:1609.05842.[935] Tachibana, Yasuki, Chang, Ning-Bo, Qin, Guang-You, Full jet in quark-gluon plasma with hydrodynamic medium response. Phys. Rev. C, 95(4), 2017, 044909, 10.1103/PhysRevC.95.044909 arXiv:1701.07951.[936] Elayavalli, Raghav Kunnawalkam, Zapp, Korinna Christine, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions. J. High Energy Phys., 07, 2017, 141, 10.1007/JHEP07(2017)141 arXiv:1707.01539.[937] Casalderrey-Solana, Jorge, Milhano, José Guilherme, Pablos, Daniel, Rajagopal, Krishna, Yao, Xiaojun, Jet wake from linearized hydrodynamics. J. High Energy Phys., 05, 2021, 230, 10.1007/JHEP05(2021)230 arXiv:2010.01140.[938] Tachibana, Yasuki, Shen, Chun, Majumder, Abhijit, Bulk medium evolution has considerable effects on jet observables. Phys. Rev. C, 106(2), 2022, L021902, 10.1103/PhysRevC.106.L021902 arXiv:2001.08321.[939] Yang, Zhong, Chen, Wei, He, Yayun, Ke, Weiyao, Pang, Longgang, Wang, Xin-Nian, Search for the elusive jet-induced diffusion wake in Z/γ-jets with 2D jet tomography in high-energy heavy-ion collisions. Phys. Rev. Lett., 127(8), 2021, 082301, 10.1103/PhysRevLett.127.082301 arXiv:2101.05422.[940] Yang, Zhong, Luo, Tan, Chen, Wei, Pang, Long-Gang, Wang, Xin-Nian, 3D structure of jet-induced diffusion wake in an expanding quark-gluon plasma. Phys. Rev. Lett., 130(5), 2023, 052301, 10.1103/PhysRevLett.130.052301 arXiv:2203.03683.[941] Mehtar-Tani, Yacine, Salgado, Carlos A., Tywoniuk, Konrad, Anti-angular ordering of gluon radiation in QCD media. Phys. Rev. Lett., 106, 2011, 122002, 10.1103/PhysRevLett.106.122002 arXiv:1009.2965.[942] Mehtar-Tani, Y., Salgado, C.A., Tywoniuk, K., Jets in QCD media: from color coherence to decoherence. Phys. Lett. B 707 (2012), 156–159, 10.1016/j.physletb.2011.12.042 arXiv:1102.4317.[943] Casalderrey-Solana, Jorge, Mehtar-Tani, Yacine, Salgado, Carlos A., Tywoniuk, Konrad, New picture of jet quenching dictated by color coherence. Phys. Lett. B 725 (2013), 357–360, 10.1016/j.physletb.2013.07.046 arXiv:1210.7765.[944] Mehtar-Tani, Yacine, Tywoniuk, Konrad, Radiative energy loss of neighboring subjets. Nucl. Phys. A 979 (2018), 165–203, 10.1016/j.nuclphysa.2018.09.041 arXiv:1706.06047.[945] Mehtar-Tani, Yacine, Pablos, Daniel, Tywoniuk, Konrad, Cone-size dependence of jet suppression in heavy-ion collisions. Phys. Rev. Lett., 127(25), 2021, 252301, 10.1103/PhysRevLett.127.252301 arXiv:2101.01742.[946] Caucal, Paul, Jet evolution in a dense QCD medium. PhD thesis, 9 2020, Saclay arXiv:2010.02874.[947] Mehtar-Tani, Yacine, Tywoniuk, Konrad, Jet (de)coherence in Pb–Pb collisions at the LHC. Phys. Lett. B 744 (2015), 284–287, 10.1016/j.physletb.2015.03.041 arXiv:1401.8293.[948] Caucal, Paul, Soto-Ontoso, Alba, Takacs, Adam, Dynamically groomed jet radius in heavy-ion collisions. Phys. Rev. D, 105(11), 2022, 114046, 10.1103/PhysRevD.105.114046 arXiv:2111.14768.[949] Casalderrey-Solana, Jorge, Milhano, Guilherme, Pablos, Daniel, Rajagopal, Krishna, Jet substructure modification probes the QGP resolution length. Nucl. Phys. A, 1005, 2021, 121904, 10.1016/j.nuclphysa.2020.121904 arXiv:2002.09193.[950] Ringer, Felix, Xiao, Bo-Wen, Yuan, Feng, Can we observe jet P

T

-broadening in heavy-ion collisions at the LHC?. Phys. Lett. B, 808, 2020, 135634, 10.1016/j.physletb.2020.135634 arXiv:1907.12541.[951] Chien, Yang-Ting, Kunnawalkam Elayavalli, Raghav, Probing heavy ion collisions using quark and gluon jet substructure. arXiv:1803.03589, 3 2018.[952] Mehtar-Tani, Yacine, Tywoniuk, Konrad, Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung. J. High Energy Phys., 04, 2017, 125, 10.1007/JHEP04(2017)125 arXiv:1610.08930.[953] Pablos, Daniel, Soto-Ontoso, Alba, Pushing forward jet substructure measurements in heavy-ion collisions. arXiv:2210.07901, 10 2022.[954] Liou, Tseh, Mueller, A.H., Wu, Bin, Radiative p

-broadening of high-energy quarks and gluons in QCD matter. Nucl. Phys. A 916 (2013), 102–125, 10.1016/j.nuclphysa.2013.08.005 arXiv:1304.7677.[955] Blaizot, Jean-Paul, Mehtar-Tani, Yacine, Renormalization of the jet-quenching parameter. Nucl. Phys. A 929 (2014), 202–229, 10.1016/j.nuclphysa.2014.05.018 arXiv:1403.2323.[956] Iancu, Edmond, The non-linear evolution of jet quenching. J. High Energy Phys., 10, 2014, 095, 10.1007/JHEP10(2014)095 arXiv:1403.1996.[957] Ghiglieri, Jacopo, Weitz, Eamonn, Classical vs quantum corrections to jet broadening in a weakly-coupled quark-gluon plasma. J. High Energy Phys., 11, 2022, 068, 10.1007/JHEP11(2022)068 arXiv:2207.08842.[958] Arnold, Peter, Universality (beyond leading log) of soft radiative corrections to qˆ in p

broadening and energy loss. J. High Energy Phys., 03, 2022, 134, 10.1007/JHEP03(2022)134 arXiv:2111.05348.[959] Caucal, Paul, Mehtar-Tani, Yacine, Universality aspects of quantum corrections to transverse momentum broadening in QCD media. J. High Energy Phys., 09, 2022, 023, 10.1007/JHEP09(2022)023 arXiv:2203.09407.[960] Caucal, Paul, Mehtar-Tani, Yacine, Anomalous diffusion in QCD matter. Phys. Rev. D, 106(5), 2022, L051501, 10.1103/PhysRevD.106.L051501 arXiv:2109.12041.[961] Arnold, Peter, Chang, Han-Chih, Iqbal, Shahin, The LPM effect in sequential bremsstrahlung 2: factorization. J. High Energy Phys., 09, 2016, 078, 10.1007/JHEP09(2016)078 arXiv:1605.07624.[962] Arnold, Peter, Chang, Han-Chih, Iqbal, Shahin, The LPM effect in sequential bremsstrahlung: 4-gluon vertices. J. High Energy Phys., 10, 2016, 124, 10.1007/JHEP10(2016)124 arXiv:1608.05718.[963] Wu, Bin, Radiative energy loss and radiative p

-broadening of high-energy partons in QCD matter. J. High Energy Phys., 12, 2014, 081, 10.1007/JHEP12(2014)081 arXiv:1408.5459.[964] Haque, Najmul, Mustafa, Munshi G., Strickland, Michael, Quark number susceptibilities from two-loop hard thermal loop perturbation theory. J. High Energy Phys., 07, 2013, 184, 10.1007/JHEP07(2013)184 arXiv:1302.3228.[965] Haque, Najmul, Andersen, Jens O., Mustafa, Munshi G., Strickland, Michael, Su, Nan, Three-loop pressure and susceptibility at finite temperature and density from hard-thermal-loop perturbation theory. Phys. Rev. D, 89(6), 2014, 061701, 10.1103/PhysRevD.89.061701 arXiv:1309.3968.[966] Andersen, Jens O., Haque, Najmul, Mustafa, Munshi G., Strickland, Michael, Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential. Phys. Rev. D, 93(5), 2016, 054045, 10.1103/PhysRevD.93.054045 arXiv:1511.04660.[967] Haque, Najmul, Strickland, Michael, Next-to-next-to leading-order hard-thermal-loop perturbation-theory predictions for the curvature of the QCD phase transition line. Phys. Rev. C, 103(3), 2021, 031901, 10.1103/PhysRevC.103.L031901 arXiv:2011.06938.[968] Fu, Wei-jie, QCD at finite temperature and density within the fRG approach: an overview. Commun. Theor. Phys., 74(9), 2022, 097304, 10.1088/1572-9494/ac86be arXiv:2205.00468.[969] Horak, Jan, Papavassiliou, Joannis, Pawlowski, Jan M., Wink, Nicolas, Ghost spectral function from the spectral Dyson-Schwinger equation. Phys. Rev. D, 104, 2021, 10.1103/PhysRevD.104.074017 arXiv:2103.16175.[970] Horak, Jan, Pawlowski, Jan M., Rodríguez-Quintero, José, Turnwald, Jonas, Urban, Julian M., Wink, Nicolas, Zafeiropoulos, Savvas, Reconstructing QCD spectral functions with Gaussian processes. Phys. Rev. D, 105(3), 2022, 036014, 10.1103/PhysRevD.105.036014 arXiv:2107.13464.[971] Horak, Jan, Pawlowski, Jan M., Wink, Nicolas, On the complex structure of Yang-Mills theory. arXiv:2202.09333, 2 2022.[972] Lowdon, Peter, Tripolt, Ralf-Arno, Pawlowski, Jan M., Rischke, Dirk H., Spectral representation of the shear viscosity for local scalar QFTs at finite temperature. Phys. Rev. D, 104(6), 2021, 065010, 10.1103/PhysRevD.104.065010 arXiv:2104.13413.[973] McLaughlin, Emma, Rose, Jacob, Dore, Travis, Parotto, Paolo, Ratti, Claudia, Noronha-Hostler, Jacquelyn, Building a testable shear viscosity across the QCD phase diagram. Phys. Rev. C, 105(2), 2022, 024903, 10.1103/PhysRevC.105.024903 arXiv:2103.02090.[974] Grefa, Joaquin, Hippert, Mauricio, Noronha, Jorge, Noronha-Hostler, Jacquelyn, Portillo, Israel, Ratti, Claudia, Rougemont, Romulo, Transport coefficients of the quark-gluon plasma at the critical point and across the first-order line. Phys. Rev. D, 106(3), 2022, 034024, 10.1103/PhysRevD.106.034024 arXiv:2203.00139.[975] Fischer, Christian S., QCD at finite temperature and chemical potential from Dyson–Schwinger equations. Prog. Part. Nucl. Phys. 105 (2019), 1–60, 10.1016/j.ppnp.2019.01.002 arXiv:1810.12938.[976] Weil, J., et al. Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions. Phys. Rev. C, 94(5), 2016, 054905, 10.1103/PhysRevC.94.054905 arXiv:1606.06642.[977] Bleicher, Marcus, Bratkovskaya, Elena, Modelling relativistic heavy-ion collisions with dynamical transport approaches. Prog. Part. Nucl. Phys., 122, 2022, 103920, 10.1016/j.ppnp.2021.103920.[978] Aichelin, J., Bratkovskaya, E., Le Fèvre, A., Kireyeu, V., Kolesnikov, V., Leifels, Y., Voronyuk, V., Coci, G., Parton-hadron-quantum-molecular dynamics: a novel microscopic n -body transport approach for heavy-ion collisions, dynamical cluster formation, and hypernuclei production. Phys. Rev. C, 101(4), 2020, 044905, 10.1103/PhysRevC.101.044905 arXiv:1907.03860.[979] Moreau, Pierre, Soloveva, Olga, Oliva, Lucia, Song, Taesoo, Cassing, Wolfgang, Bratkovskaya, Elena, Exploring the partonic phase at finite chemical potential within an extended off-shell transport approach. Phys. Rev. C, 100(1), 2019, 014911, 10.1103/PhysRevC.100.014911 arXiv:1903.10257.[980] Soloveva, Olga, Moreau, Pierre, Bratkovskaya, Elena, Transport coefficients for the hot quark-gluon plasma at finite chemical potential μ

B

. Phys. Rev. C, 101(4), 2020, 045203, 10.1103/PhysRevC.101.045203 arXiv:1911.08547.[981] Soloveva, Olga, Fuseau, David, Aichelin, Jörg, Bratkovskaya, Elena, Shear viscosity and electric conductivity of a hot and dense QGP with a chiral phase transition. Phys. Rev. C, 103(5), 2021, 054901, 10.1103/PhysRevC.103.054901 arXiv:2011.03505.[982] Rose, Jean-Bernard, Greif, Moritz, Hammelmann, Jan, Fotakis, Jan A., Denicol, Gabriel S., Elfner, Hannah, Greiner, Carsten, Cross-conductivity: novel transport coefficients to constrain the hadronic degrees of freedom of nuclear matter. Phys. Rev. D, 101(11), 2020, 114028, 10.1103/PhysRevD.101.114028 arXiv:2001.10606.[983] Cassing, Wolfgang, Transport Theories for Strongly-Interacting Systems: Applications to Heavy-Ion Collisions. Lect. Notes Phys., vol. 989, 2021, 10.1007/978-3-030-80295-0.[984] Fotakis, Jan A., Soloveva, Olga, Greiner, Carsten, Kaczmarek, Olaf, Bratkovskaya, Elena, Diffusion coefficient matrix of the strongly interacting quark-gluon plasma. Phys. Rev. D, 104(3), 2021, 034014, 10.1103/PhysRevD.104.034014 arXiv:2102.08140.[985] Soloveva, Olga, Aichelin, Jörg, Bratkovskaya, Elena, Transport properties and equation-of-state of hot and dense QGP matter near the critical endpoint in the phenomenological dynamical quasiparticle model. Phys. Rev. D, 105(5), 2022, 054011, 10.1103/PhysRevD.105.054011 arXiv:2108.08561.[986] Li, Fu-Peng, Lü, Hong-Liang, Pang, Long-Gang, Qin, Guang-You, Deep-learning quasi-particle masses from QCD equation of state. arXiv:2211.07994, 11 2022.[987] Wolter, Hermann, et al. Transport model comparison studies of intermediate-energy heavy-ion collisions. Prog. Part. Nucl. Phys., 125, 2022, 103962, 10.1016/j.ppnp.2022.103962 arXiv:2202.06672.[988] Grishmanovskii, Ilia, Song, Taesoo, Soloveva, Olga, Greiner, Carsten, Bratkovskaya, Elena, Exploring jet transport coefficients by elastic scattering in the strongly interacting quark-gluon plasma. Phys. Rev. C, 106(1), 2022, 014903, 10.1103/PhysRevC.106.014903 arXiv:2204.01561.[989] DeWolfe, Oliver, Gubser, Steven S., Rosen, Christopher, A holographic critical point. Phys. Rev. D, 83, 2011, 086005, 10.1103/PhysRevD.83.086005 arXiv:1012.1864.[990] Critelli, Renato, Noronha, Jorge, Noronha-Hostler, Jacquelyn, Portillo, Israel, Ratti, Claudia, Rougemont, Romulo, Critical point in the phase diagram of primordial quark-gluon matter from black hole physics. Phys. Rev. D, 96(9), 2017, 096026, 10.1103/PhysRevD.96.096026 arXiv:1706.00455.[991] Ishii, Takaaki, Järvinen, Matti, Nijs, Govert, Cool baryon and quark matter in holographic QCD. J. High Energy Phys., 07, 2019, 003, 10.1007/JHEP07(2019)003 arXiv:1903.06169.[992] Jokela, Niko, Järvinen, Matti, Nijs, Govert, Remes, Jere, Unified weak and strong coupling framework for nuclear matter and neutron stars. Phys. Rev. D, 103(8), 2021, 086004, 10.1103/PhysRevD.103.086004 arXiv:2006.01141.[993] Jokela, Niko, Järvinen, Matti, Remes, Jere, Holographic QCD in the NICER era. Phys. Rev. D, 105(8), 2022, 086005, 10.1103/PhysRevD.105.086005 arXiv:2111.12101.[994] Grefa, Joaquin, Noronha, Jorge, Noronha-Hostler, Jacquelyn, Portillo, Israel, Ratti, Claudia, Rougemont, Romulo, Hot and dense quark-gluon plasma thermodynamics from holographic black holes. Phys. Rev. D, 104(3), 2021, 034002, 10.1103/PhysRevD.104.034002 arXiv:2102.12042.[995] Demircik, Tuna, Ecker, Christian, Järvinen, Matti, Dense and hot QCD at strong coupling. Phys. Rev. X, 12(4), 2022, 041012, 10.1103/PhysRevX.12.041012 arXiv:2112.12157.[996] Finazzo, Stefano I., Rougemont, Romulo, Marrochio, Hugo, Noronha, Jorge, Hydrodynamic transport coefficients for the non-conformal quark-gluon plasma from holography. J. High Energy Phys., 02, 2015, 051, 10.1007/JHEP02(2015)051 arXiv:1412.2968.[997] Hoyos, Carlos, Jokela, Niko, Jarvinen, Matti, Subils, Javier G., Tarrio, Javier, Vuorinen, Aleksi, Transport in strongly coupled quark matter. Phys. Rev. Lett., 125, 2020, 241601, 10.1103/PhysRevLett.125.241601 arXiv:2005.14205.[998] Hoyos, Carlos, Jokela, Niko, Järvinen, Matti, Subils, Javier G., Tarrio, Javier, Vuorinen, Aleksi, Holographic approach to transport in dense QCD matter. Phys. Rev. D, 105(6), 2022, 066014, 10.1103/PhysRevD.105.066014 arXiv:2109.12122.[999] Hidaka, Yoshimasa, Pisarski, Robert D., Hard thermal loops, to quadratic order, in the background of a spatial 't Hooft loop. Phys. Rev. D, 80(3), 2009, 036004, 10.1103/PhysRevD.80.036004 Phys. Rev. D, 102, 2020, 059902 (Erratum) arXiv:0906.1751.[1000] Dumitru, Adrian, Guo, Yun, Hidaka, Yoshimasa, Altes, Christiaan P. Korthals, Pisarski, Robert D., How wide is the transition to deconfinement?. Phys. Rev. D, 83, 2011, 034022, 10.1103/PhysRevD.83.034022 arXiv:1011.3820.[1001] Dumitru, Adrian, Guo, Yun, Hidaka, Yoshimasa, Altes, Christiaan P. Korthals, Pisarski, Robert D., Effective matrix model for deconfinement in pure gauge theories. Phys. Rev. D, 86, 2012, 105017, 10.1103/PhysRevD.86.105017 arXiv:1205.0137.[1002] Pisarski, Robert D., Skokov, Vladimir V., Chiral matrix model of the semi-QGP in QCD. Phys. Rev. D, 94(3), 2016, 034015, 10.1103/PhysRevD.94.034015 arXiv:1604.00022.[1003] Hidaka, Yoshimasa, Pisarski, Robert D., Effective models of a semi-quark-gluon plasma. Phys. Rev. D, 104(7), 2021, 074036, 10.1103/PhysRevD.104.074036 arXiv:2009.03903.[1004] Hidaka, Yoshimasa, Pisarski, Robert D., Suppression of the shear viscosity in a “semi” quark gluon plasma. Phys. Rev. D, 78, 2008, 071501, 10.1103/PhysRevD.78.071501 arXiv:0803.0453.[1005] Hidaka, Yoshimasa, Pisarski, Robert D., Small shear viscosity in the semi quark gluon plasma. Phys. Rev. D, 81, 2010, 076002, 10.1103/PhysRevD.81.076002 arXiv:0912.0940.[1006] Chesler, Paul M., Yaffe, Laurence G., Holography and colliding gravitational shock waves in asymptotically AdS

5

spacetime. Phys. Rev. Lett., 106, 2011, 021601, 10.1103/PhysRevLett.106.021601 arXiv:1011.3562.[1007] Heller, Michal P., Janik, Romuald A., Witaszczyk, Przemyslaw, The characteristics of thermalization of boost-invariant plasma from holography. Phys. Rev. Lett., 108, 2012, 201602, 10.1103/PhysRevLett.108.201602 arXiv:1103.3452.[1008] Heller, Michal P., Mateos, David, van der Schee, Wilke, Trancanelli, Diego, Strong coupling isotropization of non-Abelian plasmas simplified. Phys. Rev. Lett., 108, 2012, 191601, 10.1103/PhysRevLett.108.191601 arXiv:1202.0981.[1009] Heller, Michal P., Mateos, David, van der Schee, Wilke, Triana, Miquel, Holographic isotropization linearized. J. High Energy Phys., 09, 2013, 026, 10.1007/JHEP09(2013)026 arXiv:1304.5172.[1010] Chesler, Paul M., Yaffe, Laurence G., Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes. J. High Energy Phys., 07, 2014, 086, 10.1007/JHEP07(2014)086 arXiv:1309.1439.[1011] Chesler, Paul M., Yaffe, Laurence G., Holography and off-center collisions of localized shock waves. J. High Energy Phys., 10, 2015, 070, 10.1007/JHEP10(2015)070 arXiv:1501.04644.[1012] Keegan, Liam, Kurkela, Aleksi, Romatschke, Paul, van der Schee, Wilke, Zhu, Yan, Weak and strong coupling equilibration in nonabelian gauge theories. J. High Energy Phys., 04, 2016, 031, 10.1007/JHEP04(2016)031 arXiv:1512.05347.[1013] Spaliński, Michał, On the hydrodynamic attractor of Yang–Mills plasma. Phys. Lett. B 776 (2018), 468–472, 10.1016/j.physletb.2017.11.059 arXiv:1708.01921.[1014] Denicol, Gabriel S., Heinz, Ulrich W., Martinez, Mauricio, Noronha, Jorge, Strickland, Michael, New exact solution of the relativistic Boltzmann equation and its hydrodynamic limit. Phys. Rev. Lett., 113(20), 2014, 202301, 10.1103/PhysRevLett.113.202301 arXiv:1408.5646.[1015] Denicol, Gabriel S., Heinz, Ulrich W., Martinez, Mauricio, Noronha, Jorge, Strickland, Michael, Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation. Phys. Rev. D, 90(12), 2014, 125026, 10.1103/PhysRevD.90.125026 arXiv:1408.7048.[1016] Kurkela, Aleksi, Zhu, Yan, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions. Phys. Rev. Lett., 115(18), 2015, 182301, 10.1103/PhysRevLett.115.182301 arXiv:1506.06647.[1017] Bazow, D., Denicol, G.S., Heinz, U., Martinez, M., Noronha, J., Analytic solution of the Boltzmann equation in an expanding system. Phys. Rev. Lett., 116(2), 2016, 022301, 10.1103/PhysRevLett.116.022301 arXiv:1507.07834.[1018] Romatschke, Paul, Relativistic fluid dynamics far from local equilibrium. Phys. Rev. Lett., 120(1), 2018, 012301, 10.1103/PhysRevLett.120.012301 arXiv:1704.08699.[1019] Kurkela, Aleksi, Mazeliauskas, Aleksas, Paquet, Jean-François, Schlichting, Sören, Teaney, Derek, Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions. Phys. Rev. C, 99(3), 2019, 034910, 10.1103/PhysRevC.99.034910 arXiv:1805.00961.[1020] Kurkela, Aleksi, van der Schee, Wilke, Wiedemann, Urs Achim, Wu, Bin, Early- and late-time behavior of attractors in heavy-ion collisions. Phys. Rev. Lett., 124(10), 2020, 102301, 10.1103/PhysRevLett.124.102301 arXiv:1907.08101.[1021] Denicol, Gabriel S., Noronha, Jorge, Exact hydrodynamic attractor of an ultrarelativistic gas of hard spheres. Phys. Rev. Lett., 124(15), 2020, 152301, 10.1103/PhysRevLett.124.152301 arXiv:1908.09957.[1022] Brewer, Jasmine, Yan, Li, Yin, Yi, Adiabatic hydrodynamization in rapidly-expanding quark–gluon plasma. Phys. Lett. B, 816, 2021, 136189, 10.1016/j.physletb.2021.136189 arXiv:1910.00021.[1023] Almaalol, Dekrayat, Kurkela, Aleksi, Strickland, Michael, Nonequilibrium attractor in high-temperature QCD plasmas. Phys. Rev. Lett., 125(12), 2020, 122302, 10.1103/PhysRevLett.125.122302 arXiv:2004.05195.[1024] Mullins, Nicki, Denicol, Gabriel S., Noronha, Jorge, Far-from-equilibrium kinetic dynamics of λϕ4 theory in an expanding universe. Phys. Rev. D, 106(5), 2022, 056024, 10.1103/PhysRevD.106.056024 arXiv:2207.07786.[1025] Brewer, Jasmine, Scheihing-Hitschfeld, Bruno, Yin, Yi, Scaling and adiabaticity in a rapidly expanding gluon plasma. J. High Energy Phys., 05, 2022, 145, 10.1007/JHEP05(2022)145 arXiv:2203.02427.[1026] Heller, Michal P., Janik, Romuald A., Witaszczyk, Przemyslaw, Hydrodynamic gradient expansion in gauge theory plasmas. Phys. Rev. Lett., 110(21), 2013, 211602, 10.1103/PhysRevLett.110.211602 arXiv:1302.0697.[1027] Buchel, Alex, Heller, Michal P., Noronha, Jorge, Entropy production, hydrodynamics, and resurgence in the primordial quark-gluon plasma from holography. Phys. Rev. D, 94(10), 2016, 106011, 10.1103/PhysRevD.94.106011 arXiv:1603.05344.[1028] Denicol, Gabriel S., Noronha, Jorge, Divergence of the Chapman-Enskog expansion in relativistic kinetic theory. arXiv:1608.07869, 8 2016.[1029] Heller, Michal P., Kurkela, Aleksi, Spaliński, Michal, Svensson, Viktor, Hydrodynamization in kinetic theory: transient modes and the gradient expansion. Phys. Rev. D, 97(9), 2018, 091503, 10.1103/PhysRevD.97.091503 arXiv:1609.04803.[1030] Heller, Michal P., Spalinski, Michal, Hydrodynamics beyond the gradient expansion: resurgence and resummation. Phys. Rev. Lett., 115(7), 2015, 072501, 10.1103/PhysRevLett.115.072501 arXiv:1503.07514.[1031] Florkowski, Wojciech, Heller, Michal P., Spalinski, Michal, New theories of relativistic hydrodynamics in the LHC era. Rep. Prog. Phys., 81(4), 2018, 046001, 10.1088/1361-6633/aaa091 arXiv:1707.02282.[1032] Romatschke, Paul, Romatschke, Ulrike, Relativistic Fluid Dynamics in and Out of Equilibrium. Cambridge Monographs on Mathematical Physics, 5 2019, Cambridge University Press, 10.1017/9781108651998 arXiv:1712.05815.[1033] Berges, Jürgen, Heller, Michal P., Mazeliauskas, Aleksas, Venugopalan, Raju, QCD thermalization: ab initio approaches and interdisciplinary connections. Rev. Mod. Phys., 93(3), 2021, 035003, 10.1103/RevModPhys.93.035003 arXiv:2005.12299.[1034] Chattopadhyay, Chandrodoy, Jaiswal, Sunil, Du, Lipei, Heinz, Ulrich, Pal, Subrata, Non-conformal attractor in boost-invariant plasmas. Phys. Lett. B, 824, 2022, 136820, 10.1016/j.physletb.2021.136820 arXiv:2107.05500.[1035] Jaiswal, Sunil, Chattopadhyay, Chandrodoy, Du, Lipei, Heinz, Ulrich, Pal, Subrata, Nonconformal kinetic theory and hydrodynamics for Bjorken flow. Phys. Rev. C, 105(2), 2022, 024911, 10.1103/PhysRevC.105.024911 arXiv:2107.10248.[1036] Martinez, Mauricio, Strickland, Michael, Dissipative dynamics of highly anisotropic systems. Nucl. Phys. A 848 (2010), 183–197, 10.1016/j.nuclphysa.2010.08.011 arXiv:1007.0889.[1037] Florkowski, Wojciech, Ryblewski, Radoslaw, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions. Phys. Rev. C, 83, 2011, 034907, 10.1103/PhysRevC.83.034907 arXiv:1007.0130.[1038] McNelis, Mike, Bazow, Dennis, Heinz, Ulrich, Anisotropic fluid dynamical simulations of heavy-ion collisions. Comput. Phys. Commun., 267, 2021, 108077, 10.1016/j.cpc.2021.108077 arXiv:2101.02827.[1039] Bemfica, Fábio S., Disconzi, Marcelo M., Noronha, Jorge, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity. Phys. Rev. D, 98(10), 2018, 104064, 10.1103/PhysRevD.98.104064 arXiv:1708.06255.[1040] Kovtun, Pavel, First-order relativistic hydrodynamics is stable. J. High Energy Phys., 10, 2019, 034, 10.1007/JHEP10(2019)034 arXiv:1907.08191.[1041] Bemfica, Fábio S., Bemfica, Fábio S., Disconzi, Marcelo M., Disconzi, Marcelo M., Noronha, Jorge, Noronha, Jorge, Nonlinear causality of general first-order relativistic viscous hydrodynamics. Phys. Rev. D, 100(10), 2019, 104020, 10.1103/PhysRevD.100.104020 Phys. Rev. D, 105, 2022, 069902 (Erratum) arXiv:1907.12695.[1042] Hoult, Raphael E., Kovtun, Pavel, Stable and causal relativistic Navier-Stokes equations. J. High Energy Phys., 06, 2020, 067, 10.1007/JHEP06(2020)067 arXiv:2004.04102.[1043] Bemfica, Fabio S., Disconzi, Marcelo M., Noronha, Jorge, First-order general-relativistic viscous fluid dynamics. Phys. Rev. X, 12(2), 2022, 021044, 10.1103/PhysRevX.12.021044 arXiv:2009.11388.[1044] Noronha, Jorge, Spaliński, Michał, Speranza, Enrico, Transient relativistic fluid dynamics in a general hydrodynamic frame. Phys. Rev. Lett., 128(25), 2022, 252302, 10.1103/PhysRevLett.128.252302 arXiv:2105.01034.[1045] Israel, W., Stewart, J.M., Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118 (1979), 341–372, 10.1016/0003-4916(79)90130-1.[1046] Bemfica, Fábio S., Disconzi, Marcelo M., Hoang, Vu, Noronha, Jorge, Radosz, Maria, Nonlinear constraints on relativistic fluids far from equilibrium. Phys. Rev. Lett., 126(22), 2021, 222301, 10.1103/PhysRevLett.126.222301 arXiv:2005.11632.[1047] Greif, Moritz, Fotakis, Jan A., Denicol, Gabriel S., Greiner, Carsten, Diffusion of conserved charges in relativistic heavy ion collisions. Phys. Rev. Lett., 120(24), 2018, 242301, 10.1103/PhysRevLett.120.242301 arXiv:1711.08680.[1048] Almaalol, Dekrayat, Dore, Travis, Noronha-Hostler, Jacquelyn, Stability of multi-component relativistic viscous hydrodynamics from Israel-Stewart and reproducing DNMR from maximizing the entropy. arXiv:2209.11210, 9 2022.[1049] Martinez, Mauricio, Sievert, Matthew D., Wertepny, Douglas E., Noronha-Hostler, Jacquelyn, Initial state fluctuations of QCD conserved charges in heavy-ion collisions. arXiv:1911.10272, 11 2019.[1050] Chiu, Cheng, Shen, Chun, Exploring theoretical uncertainties in the hydrodynamic description of relativistic heavy-ion collisions. Phys. Rev. C, 103(6), 2021, 064901, 10.1103/PhysRevC.103.064901 arXiv:2103.09848.[1051] Plumberg, Christopher, Almaalol, Dekrayat, Dore, Travis, Noronha, Jorge, Noronha-Hostler, Jacquelyn, Causality violations in realistic simulations of heavy-ion collisions. Phys. Rev. C, 105(6), 2022, L061901, 10.1103/PhysRevC.105.L061901 arXiv:2103.15889.[1052] Giacalone, Giuliano, Mazeliauskas, Aleksas, Schlichting, Sören, Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions. Phys. Rev. Lett., 123(26), 2019, 262301, 10.1103/PhysRevLett.123.262301 arXiv:1908.02866.[1053] Kurkela, Aleksi, Mazeliauskas, Aleksas, Chemical equilibration in hadronic collisions. Phys. Rev. Lett., 122, 2019, 142301, 10.1103/PhysRevLett.122.142301 arXiv:1811.03040.[1054] Kurkela, Aleksi, Mazeliauskas, Aleksas, Chemical equilibration in weakly coupled QCD. Phys. Rev. D, 99(5), 2019, 054018, 10.1103/PhysRevD.99.054018 arXiv:1811.03068.[1055] Nunes da Silva, Tiago, Chinellato, David, Hippert, Mauricio, Serenone, Willian, Takahashi, Jun, Denicol, Gabriel S., Luzum, Matthew, Noronha, Jorge, Pre-hydrodynamic evolution and its signatures in final-state heavy-ion observables. Phys. Rev. C, 103, 2021, 054906, 10.1103/PhysRevC.103.054906 arXiv:2006.02324.[1056] Nunes da Silva, Tiago, Chinellato, David D., Giannini, André V., Ferreira, Maurício N., Denicol, Gabriel S., Hippert, Maurício, Luzum, Matthew, Noronha, Jorge, Takahashi, Jun, Pre-hydrodynamic evolution in large and small systems. arXiv:2211.10561, 11 2022.[1057] Akamatsu, Yukinao, Mazeliauskas, Aleksas, Teaney, Derek, A kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion. Nucl. Phys. A 967 (2017), 872–875, 10.1016/j.nuclphysa.2017.04.029 arXiv:1705.08199.[1058] Akamatsu, Yukinao, Mazeliauskas, Aleksas, Teaney, Derek, Bulk viscosity from hydrodynamic fluctuations with relativistic hydrokinetic theory. Phys. Rev. C, 97(2), 2018, 024902, 10.1103/PhysRevC.97.024902 arXiv:1708.05657.[1059] Martinez, M., Schäfer, T., Skokov, V., Critical behavior of the bulk viscosity in QCD. Phys. Rev. D, 100(7), 2019, 074017, 10.1103/PhysRevD.100.074017 arXiv:1906.11306.[1060] Kharzeev, D.E., Liao, J., Voloshin, S.A., Wang, G., Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report. Prog. Part. Nucl. Phys. 88 (2016), 1–28, 10.1016/j.ppnp.2016.01.001 arXiv:1511.04050.[1061] Becattini, Francesco, Spin and polarization: a new direction in relativistic heavy ion physics. Rep. Prog. Phys., 85(12), 2022, 122301, 10.1088/1361-6633/ac97a9 arXiv:2204.01144.[1062] Son, Dam T., Surowka, Piotr, Hydrodynamics with triangle anomalies. Phys. Rev. Lett., 103, 2009, 191601, 10.1103/PhysRevLett.103.191601 arXiv:0906.5044.[1063] Huang, Xu-Guang, Electromagnetic fields and anomalous transports in heavy-ion collisions — a pedagogical review. Rep. Prog. Phys., 79(7), 2016, 076302, 10.1088/0034-4885/79/7/076302 arXiv:1509.04073.[1064] Hosur, Pavan, Qi, Xiaoliang, Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14 (2013), 857–870, 10.1016/j.crhy.2013.10.010 arXiv:1309.4464.[1065] Speranza, Enrico, Bemfica, Fábio S., Disconzi, Marcelo M., Noronha, Jorge, Challenges in solving chiral hydrodynamics. arXiv:2104.02110, 4 2021.[1066] Hattori, Koichi, Hongo, Masaru, Huang, Xu-Guang, Matsuo, Mamoru, Taya, Hidetoshi, Fate of spin polarization in a relativistic fluid: an entropy-current analysis. Phys. Lett. B 795 (2019), 100–106, 10.1016/j.physletb.2019.05.040 arXiv:1901.06615.[1067] Montenegro, David, Torrieri, Giorgio, Linear response theory and effective action of relativistic hydrodynamics with spin. Phys. Rev. D, 102(3), 2020, 036007, 10.1103/PhysRevD.102.036007 arXiv:2004.10195.[1068] Gallegos, A.D., Gürsoy, U., Holographic spin liquids and Lovelock Chern-Simons gravity. J. High Energy Phys., 11, 2020, 151, 10.1007/JHEP11(2020)151 arXiv:2004.05148.[1069] Hongo, Masaru, Huang, Xu-Guang, Kaminski, Matthias, Stephanov, Mikhail, Yee, Ho-Ung, Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation. J. High Energy Phys., 11, 2021, 150, 10.1007/JHEP11(2021)150 arXiv:2107.14231.[1070] Gallegos, A.D., Gursoy, U., Yarom, A., Hydrodynamics, spin currents and torsion. arXiv:2203.05044, 3 2022.[1071] Weickgenannt, Nora, Speranza, Enrico, Sheng, Xin-li, Wang, Qun, Rischke, Dirk H., Generating spin polarization from vorticity through nonlocal collisions. Phys. Rev. Lett., 127(5), 2021, 052301, 10.1103/PhysRevLett.127.052301 arXiv:2005.01506.[1072] Weickgenannt, Nora, Wagner, David, Speranza, Enrico, Rischke, Dirk H., Relativistic second-order dissipative spin hydrodynamics from the method of moments. Phys. Rev. D, 106(9), 2022, 096014, 10.1103/PhysRevD.106.096014 arXiv:2203.04766.[1073] Weickgenannt, Nora, Wagner, David, Speranza, Enrico, Rischke, Dirk H., Relativistic dissipative spin hydrodynamics from kinetic theory with a nonlocal collision term. Phys. Rev. D, 106(9), 2022, L091901, 10.1103/PhysRevD.106.L091901 arXiv:2208.01955.[1074] Wagner, David, Weickgenannt, Nora, Rischke, Dirk H., Lorentz-covariant nonlocal collision term for spin-1/2 particles. Phys. Rev. D, 106(11), 2022, 116021, 10.1103/PhysRevD.106.116021 arXiv:2210.06187.[1075] Hartnack, C., Aichelin, J., Stoecker, Horst, Greiner, W., Out of plane squeeze of clusters in relativistic heavy ion collisions. Phys. Lett. B 336 (1994), 131–135, 10.1016/0370-2693(94)90237-2.[1076] Li, Bao-An, Ko, C.M., Probing the softest region of nuclear equation of state. Phys. Rev. C 58 (1998), R1382–R1384, 10.1103/PhysRevC.58.R1382 arXiv:nucl-th/9807088.[1077] Wang, Yongjia, Guo, Chenchen, Li, Qingfeng, Le Fèvre, Arnaud, Leifels, Yvonne, Trautmann, Wolfgang, Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4 A –1.0 A GeV. Phys. Lett. B 778 (2018), 207–212, 10.1016/j.physletb.2018.01.035 arXiv:1804.04293.[1078] Nara, Yasushi, Ohnishi, Akira, Mean-field update in the JAM microscopic transport model: mean-field effects on collective flow in high-energy heavy-ion collisions at sNN=2–20 GeV energies. Phys. Rev. C, 105(1), 2022, 014911, 10.1103/PhysRevC.105.014911 arXiv:2109.07594.[1079] Sorensen, Agnieszka, et al. Dense nuclear matter equation of state from heavy-ion collisions. arXiv:2301.13253, 1 2023.[1080] Nuclear Physics and Quantum Information Science: Report by the NSAC QIS Subcommittee. Technical report, October 2019, NSF & DOE Office of Science https://science.osti.gov/-/media/np/pdf/Reports/NSAC_QIS_Report.pdf.[1081] Detmold, William, Edwards, Robert G., Dudek, Jozef J., Engelhardt, Michael, Lin, Huey-Wen, Meinel, Stefan, Orginos, Kostas, Shanahan, Phiala, Hadrons and nuclei. Eur. Phys. J. A, 55(11), 2019, 193, 10.1140/epja/i2019-12902-4 arXiv:1904.09512.[1082] Cirigliano, Vincenzo, Davoudi, Zohreh, Bhattacharya, Tanmoy, Izubuchi, Taku, Shanahan, Phiala E., Syritsyn, Sergey, Wagman, Michael L., The role of lattice QCD in searches for violations of fundamental symmetries and signals for new physics. Eur. Phys. J. A, 55(11), 2019, 197, 10.1140/epja/i2019-12889-8 arXiv:1904.09704.[1083] Kronfeld, Andreas S., Richards, David G., Detmold, William, Gupta, Rajan, Lin, Huey-Wen, Liu, Keh-Fei, Meyer, Aaron S., Sufian, Raza, Syritsyn, Sergey, Lattice QCD and neutrino-nucleus scattering. Eur. Phys. J. A, 55(11), 2019, 196, 10.1140/epja/i2019-12916-x arXiv:1904.09931.[1084] Bazavov, Alexei, Karsch, Frithjof, Mukherjee, Swagato, Petreczky, Peter, Hot-dense lattice QCD: USQCD whitepaper 2018. Eur. Phys. J. A, 55(11), 2019, 194, 10.1140/epja/i2019-12922-0 arXiv:1904.09951.[1085] Joó, Bálint, Jung, Chulwoo, Christ, Norman H., Detmold, William, Edwards, Robert, Savage, Martin, Shanahan, Phiala, Status and future perspectives for lattice gauge theory calculations to the exascale and beyond. Eur. Phys. J. A, 55(11), 2019, 199, 10.1140/epja/i2019-12919-7 arXiv:1904.09725.[1086] Ciavarella, Anthony, Klco, Natalie, Savage, Martin J., Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis. Phys. Rev. D, 103(9), 2021, 094501, 10.1103/PhysRevD.103.094501 arXiv:2101.10227.[1087] Ciavarella, Anthony, Klco, Natalie, Savage, Martin J., Some conceptual aspects of operator design for quantum simulations of non-Abelian lattice gauge theories. arXiv:2203.11988, 3 2022.[1088] Buluta, Iulia, Nori, Franco, Quantum simulators. Science 326:5949 (2009), 108–111.[1089] Brown, Katherine L., Munro, William J., Kendon, Vivien M., Using quantum computers for quantum simulation. Entropy 12:11 (2010), 2268–2307.[1090] Georgescu, I.M., Ashhab, S., Nori, Franco, Quantum simulation. Rev. Mod. Phys., 86, 2014, 153, 10.1103/RevModPhys.86.153 arXiv:1308.6253.[1091] Altman, Ehud, Brown, Kenneth R., Carleo, Giuseppe, Carr, Lincoln D., Demler, Eugene, Chin, Cheng, DeMarco, Brian, Economou, Sophia E., Eriksson, Mark A., Fu, Kai-Mei C., et al. Quantum simulators: architectures and opportunities. PRX Quantum, 2(1), 2021, 017003.[1092] Alexeev, Yuri, Bacon, Dave, Brown, Kenneth R., Calderbank, Robert, Carr, Lincoln D., Chong, Frederic T., DeMarco, Brian, Englund, Dirk, Farhi, Edward, Fefferman, Bill, et al. Quantum computer systems for scientific discovery. PRX Quantum, 2(1), 2021, 017001.[1093] Elben, Andreas, Flammia, Steven T., Huang, Hsin-Yuan, Kueng, Richard, Preskill, John, Vermersch, Benoît, Zoller, Peter, The randomized measurement toolbox. Nat. Rev. Phys. 5:1 (2023), 9–24, 10.1038/s42254-022-00535-2 arXiv:2203.11374.[1094] Martinez, Esteban A., Muschik, Christine A., Schindler, Philipp, Nigg, Daniel, Erhard, Alexander, Heyl, Markus, Hauke, Philipp, Dalmonte, Marcello, Monz, Thomas, Zoller, Peter, et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534:7608 (2016), 516–519.[1095] Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J., Quantum-classical dynamical calculations of the Schwinger model using quantum computers. arXiv preprint arXiv:1803.03326, 2018.[1096] Nguyen, Nhung H., Tran, Minh C., Zhu, Yingyue, Green, Alaina M., Alderete, C. Huerta, Davoudi, Zohreh, Linke, Norbert M., Digital quantum simulation of the Schwinger model and symmetry protection with trapped ions. PRX Quantum, 3(2), 2022, 020324.[1097] Mueller, Niklas, Carolan, Joseph A., Connelly, Andrew, Davoudi, Zohreh, Dumitrescu, Eugene F., Yeter-Aydeniz, Kübra, Quantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory. arXiv:2210.03089, 10 2022.[1098] de Jong, Wibe A., Lee, Kyle, Mulligan, James, Płoskoń, Mateusz, Ringer, Felix, Yao, Xiaojun, Quantum simulation of non-equilibrium dynamics and thermalization in the Schwinger model. arXiv preprint arXiv:2106.08394, 2021.[1099] Mil, Alexander, Zache, Torsten V., Hegde, Apoorva, Xia, Andy, Bhatt, Rohit P., Oberthaler, Markus K., Hauke, Philipp, Berges, Jürgen, Jendrzejewski, Fred, A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367:6482 (2020), 1128–1130.[1100] Zhou, Zhao-Yu, Su, Guo-Xian, Halimeh, Jad C., Ott, Robert, Sun, Hui, Hauke, Philipp, Yang, Bing, Yuan, Zhen-Sheng, Berges, Jürgen, Pan, Jian-Wei, Thermalization dynamics of a gauge theory on a quantum simulator. arXiv preprint arXiv:2107.13563, 2021.[1101] Byrnes, Tim, Yamamoto, Yoshihisa, Simulating lattice gauge theories on a quantum computer. Phys. Rev. A, 73, 2006, 022328, 10.1103/PhysRevA.73.022328 arXiv:quant-ph/0510027.[1102] Kan, Angus, Nam, Yunseong, Lattice quantum chromodynamics and electrodynamics on a universal quantum computer. arXiv:2107.12769, 2021 https://arxiv.org/abs/2107.12769.[1103] Bauer, Christian W., et al. Quantum simulation for high energy physics. arXiv:2204.03381, 4 2022.[1104] Shaw, Alexander F., Lougovski, Pavel, Stryker, Jesse R., Wiebe, Nathan, Quantum algorithms for simulating the lattice Schwinger model. Quantum, 4, 2020, 306.[1105] Lamm, Henry, Lawrence, Scott, Yamauchi, Yukari, General methods for digital quantum simulation of gauge theories. Phys. Rev. D, 100(3), 2019, 034518, 10.1103/PhysRevD.100.034518 arXiv:1903.08807.[1106] Klco, Natalie, Stryker, Jesse R., Savage, Martin J., SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Phys. Rev. D, 101(7), 2020, 074512, 10.1103/PhysRevD.101.074512 arXiv:1908.06935.[1107] Mueller, Niklas, Tarasov, Andrey, Venugopalan, Raju, Deeply inelastic scattering structure functions on a hybrid quantum computer. Phys. Rev. D, 102(1), 2020, 016007, 10.1103/PhysRevD.102.016007 arXiv:1908.07051.[1108] Barata, João, Mueller, Niklas, Tarasov, Andrey, Venugopalan, Raju, Single-particle digitization strategy for quantum computation of a ϕ4 scalar field theory. Phys. Rev. A, 103(4), 2021, 042410, 10.1103/PhysRevA.103.042410 arXiv:2012.00020.[1109] Atas, Yasar Y., Zhang, Jinglei, Lewis, Randy, Jahanpour, Amin, Haase, Jan F., Muschik, Christine A., SU(2) hadrons on a quantum computer via a variational approach. Nat. Commun., 12(1), 2021, 6499, 10.1038/s41467-021-26825-4 arXiv:2102.08920.[1110] Rahman, Sarmed A., Lewis, Randy, Mendicelli, Emanuele, Powell, Sarah, Su (2) lattice gauge theory on a quantum annealer. Phys. Rev. D, 104(3), 2021, 034501.[1111] Atas, Yasar Y., Haase, Jan F., Zhang, Jinglei, Wei, Victor, Pfaendler, Sieglinde M.L., Lewis, Randy, Muschik, Christine A., Real-time evolution of SU(3) hadrons on a quantum computer. arXiv:2207.03473, 7 2022.[1112] Illa, Marc, Savage, Martin J., Basic elements for simulations of standard-model physics with quantum annealers: multigrid and clock states. Phys. Rev. A, 106(5), 2022, 052605, 10.1103/PhysRevA.106.052605 arXiv:2202.12340.[1113] Farrell, Roland C., Chernyshev, Ivan A., Powell, Sarah J.M., Zemlevskiy, Nikita A., Illa, Marc, Savage, Martin J., Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions: (II) single-baryon β-decay in real time. arXiv:2209.10781, 9 2022.[1114] Bedaque, Paulo F., Khadka, Ratna, Rupak, Gautam, Yusf, Muhammad, Radiative processes on a quantum computer. arXiv:2209.09962, 9 2022.[1115] De Jong, Wibe A., Metcalf, Mekena, Mulligan, James, Płoskoń, Mateusz, Ringer, Felix, Yao, Xiaojun, Quantum simulation of open quantum systems in heavy-ion collisions. Phys. Rev. D, 104(5), 2021, 051501, 10.1103/PhysRevD.104.L051501 arXiv:2010.03571.[1116] Czajka, Alexander M., Kang, Zhong-Bo, Ma, Henry, Zhao, Fanyi, Quantum simulation of chiral phase transitions. J. High Energy Phys., 08, 2022, 209, 10.1007/JHEP08(2022)209 arXiv:2112.03944.[1117] Davoudi, Zohreh, Mueller, Niklas, Powers, Connor, Toward quantum computing phase diagrams of gauge theories with thermal pure quantum states. arXiv:2208.13112, 8 2022.[1118] Cohen, Thomas D., Lamm, Henry, Lawrence, Scott, Yamauchi, Yukari, Quantum algorithms for transport coefficients in gauge theories. Phys. Rev. D, 104(9), 2021, 094514, 10.1103/PhysRevD.104.094514 arXiv:2104.02024.[1119] Lamm, Henry, Lawrence, Scott, Yamauchi, Yukari, Parton physics on a quantum computer. Phys. Rev. Res., 2(1), 2020, 013272, 10.1103/PhysRevResearch.2.013272 arXiv:1908.10439.[1120] Gong, Wenjie, Parida, Ganesh, Tu, Zhoudunming, Venugopalan, Raju, Measurement of Bell-type inequalities and quantum entanglement from Λ-hyperon spin correlations at high energy colliders. Phys. Rev. D, 106(3), 2022, L031501, 10.1103/PhysRevD.106.L031501 arXiv:2107.13007.[1121] Yao, Xiaojun, Quantum simulation of light-front QCD for jet quenching in nuclear environments. arXiv:2205.07902, 5 2022.[1122] Humble, Travis S., Delgado, Andrea, Pooser, Raphael, Seck, Christopher, Bennink, Ryan, Leyton-Ortega, Vicente, Wang, C.-C. Joseph, Dumitrescu, Eugene, Morris, Titus, Hamilton, Kathleen, et al. Snowmass white paper: quantum computing systems and software for high-energy physics research. arXiv preprint arXiv:2203.07091, 2022.[1123] Heffernan, Matthew, Gale, Charles, Jeon, Sangyong, Paquet, Jean-Francois, Bayesian quantification of the quark-gluon plasma: improved design and closure demonstration. 29th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, 7 2022 arXiv:2207.14751.[1124] Liyanage, Dananjaya, Ji, Yi, Everett, Derek, Heffernan, Matthew, Heinz, Ulrich, Mak, Simon, Paquet, Jean-Francois, Efficient emulation of relativistic heavy ion collisions with transfer learning. Phys. Rev. C, 105(3), 2022, 034910, 10.1103/PhysRevC.105.034910 arXiv:2201.07302.[1125] Ji, Yi, Yuchi, Henry Shaowu, Soeder, Derek, Paquet, J.F., Bass, Steffen A., Joseph, V. Roshan, Wu, C.F. Jeff, Mak, Simon, Multi-stage multi-fidelity Gaussian process modeling, with application to heavy-ion collisions. arXiv:2209.13748, 9 2022.[1126] Phillips, D.R., et al. Get on the BAND wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics. J. Phys. G, 48(7), 2021, 072001, 10.1088/1361-6471/abf1df arXiv:2012.07704.[1127] Parkkila, J.E., Onnerstad, A., Taghavi, S.F., Mordasini, C., Bilandzic, A., Virta, M., Kim, D.J., New constraints for QCD matter from improved Bayesian parameter estimation in heavy-ion collisions at LHC. Phys. Lett. B, 835, 2022, 137485, 10.1016/j.physletb.2022.137485 arXiv:2111.08145.[1128] ALICE upgrade physics performance studies for 2018 Report on HL/HE-LHC physics., 2019.[1129] ALICE upgrades during the LHC long shutdown 2. arXiv:2302.01238, 2 2023.[1130] New opportunities of heavy ion physics with CMS-MTD at the HL-LHC. http://cds.cern.ch/record/2800541, 2021.[1131] Snowmass White Paper Contribution: Physics with the Phase-2 ATLAS and CMS Detectors. Technical report, 2022, CERN, Geneva https://cds.cern.ch/record/2806962.[1132] Krintiras, Georgios K., Leiton, Andre G. Stahl, The CMS heavy ion group contribution to 2022 NSAC long-range plan town Hall meeting (hot and cold QCD) – letter of interest. arXiv:2209.11564, 9 2022.[1133] Citron, Z., et al. Report from Working Group 5: Future Physics Opportunities for High-Density QCD at the LHC with Heavy-Ion and Proton Beams. CERN Yellow Rep. Monogr., vol. 7, 2019, 1159–1410, 10.23731/CYRM-2019-007.1159 arXiv:1812.06772.[1134] Gardim, Fernando G., Giacalone, Giuliano, Ollitrault, Jean-Yves, The mean transverse momentum of ultracentral heavy-ion collisions: a new probe of hydrodynamics. Phys. Lett. B, 809, 2020, 135749, 10.1016/j.physletb.2020.135749 arXiv:1909.11609.[1135] Stoecker, Horst, Maruhn, J.A., Greiner, W., Collective sideward flow of nuclear matter in violent high-energy heavy ion collisions. Phys. Rev. Lett., 44, 1980, 725, 10.1103/PhysRevLett.44.725.[1136] Ollitrault, Jean-Yves, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46 (1992), 229–245, 10.1103/PhysRevD.46.229.[1137] Rischke, Dirk H., Pürsün, Yaris, Maruhn, Joachim A., Stoecker, Horst, Greiner, Walter, The phase transition to the quark - gluon plasma and its effects on hydrodynamic flow. Acta Phys. Hung. A 1 (1995), 309–322, 10.1007/BF03053749 arXiv:nucl-th/9505014.[1138] Stoecker, Horst, Collective flow signals the quark gluon plasma. Nucl. Phys. A 750 (2005), 121–147, 10.1016/j.nuclphysa.2004.12.074 arXiv:nucl-th/0406018.[1139] Brachmann, J., Soff, S., Dumitru, A., Stoecker, Horst, Maruhn, J.A., Greiner, W., Bravina, L.V., Rischke, D.H., Antiflow of nucleons at the softest point of the EoS. Phys. Rev. C, 61, 2000, 024909, 10.1103/PhysRevC.61.024909 arXiv:nucl-th/9908010.[1140] Csernai, L.P., Rohrich, D., Third flow component as QGP signal. Phys. Lett. B, 458, 1999, 454, 10.1016/S0370-2693(99)00615-2 arXiv:nucl-th/9908034.[1141] Ivanov, Yu.B., Soldatov, A.A., Directed flow indicates a cross-over deconfinement transition in relativistic nuclear collisions. Phys. Rev. C, 91(2), 2015, 024915, 10.1103/PhysRevC.91.024915 arXiv:1412.1669.[1142] Sorensen, Agnieszka, Oliinychenko, Dmytro, Koch, Volker, McLerran, Larry, Speed of sound and baryon cumulants in heavy-ion collisions. Phys. Rev. Lett., 127(4), 2021, 042303, 10.1103/PhysRevLett.127.042303 arXiv:2103.07365.[1143] Vovchenko, Volodymyr, Savchuk, Oleh, Poberezhnyuk, Roman V., Gorenstein, Mark I., Koch, Volker, Connecting fluctuation measurements in heavy-ion collisions with the grand-canonical susceptibilities. Phys. Lett. B, 811, 2020, 135868, 10.1016/j.physletb.2020.135868 arXiv:2003.13905.[1144] Vovchenko, Volodymyr, Poberezhnyuk, Roman V., Koch, Volker, Cumulants of multiple conserved charges and global conservation laws. J. High Energy Phys., 10, 2020, 089, 10.1007/JHEP10(2020)089 arXiv:2007.03850.[1145] Almaalol, D., et al. QCD phase structure and interactions at high baryon density: continuation of BES physics program with CBM at FAIR. arXiv:2209.05009, 9 2022.[1146] Lovato, Alessandro, et al. Long range plan: dense matter theory for heavy-ion collisions and neutron stars. arXiv:2211.02224, 11 2022.[1147] Nara, Yasushi, Maruyama, Tomoyuki, Stoecker, Horst, Momentum-dependent potential and collective flows within the relativistic quantum molecular dynamics approach based on relativistic mean-field theory. Phys. Rev. C, 102(2), 2020, 024913, 10.1103/PhysRevC.102.024913 arXiv:2004.05550.[1148] Monnai, Akihiko, Chemically non-equilibrated QGP and thermal photon elliptic flow. 7th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, 10 2015, 10.1016/j.nuclphysbps.2016.05.052 arXiv:1510.00539.[1149] Linnyk, O., Bratkovskaya, E.L., Cassing, W., Effective QCD and transport description of dilepton and photon production in heavy-ion collisions and elementary processes. Prog. Part. Nucl. Phys. 87 (2016), 50–115, 10.1016/j.ppnp.2015.12.003 arXiv:1512.08126.[1150] Greif, Moritz, Senzel, Florian, Kremer, Heiner, Zhou, Kai, Greiner, Carsten, Xu, Zhe, Nonequilibrium photon production in partonic transport simulations. Phys. Rev. C, 95(5), 2017, 054903, 10.1103/PhysRevC.95.054903 arXiv:1612.05811.[1151] Vovchenko, V., Karpenko, Iu.A., Gorenstein, M.I., Satarov, L.M., Mishustin, I.N., Kämpfer, B., Stoecker, H., Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C, 94(2), 2016, 024906, 10.1103/PhysRevC.94.024906 arXiv:1604.06346.[1152] Srivastava, Dinesh K., Chatterjee, Rupa, Mustafa, Munshi G., Initial temperature and extent of chemical equilibration of partons in relativistic collisions of heavy nuclei. J. Phys. G, 45(1), 2018, 015103, 10.1088/1361-6471/aa9421 arXiv:1609.06496.[1153] Oliva, L., Ruggieri, M., Plumari, S., Scardina, F., Peng, G.X., Greco, V., Photons from the early stages of relativistic heavy ion collisions. Phys. Rev. C, 96(1), 2017, 014914, 10.1103/PhysRevC.96.014914 arXiv:1703.00116.[1154] Berges, Jurgen, Reygers, Klaus, Tanji, Naoto, Venugopalan, Raju, Parametric estimate of the relative photon yields from the glasma and the quark-gluon plasma in heavy-ion collisions. Phys. Rev. C, 95(5), 2017, 054904, 10.1103/PhysRevC.95.054904 arXiv:1701.05064.[1155] Monnai, Akihiko, Prompt, pre-equilibrium, and thermal photons in relativistic nuclear collisions. J. Phys. G, 47(7), 2020, 075105, 10.1088/1361-6471/ab8d8c arXiv:1907.09266.[1156] Churchill, Jessica, Yan, Li, Jeon, Sangyong, Gale, Charles, Emission of electromagnetic radiation from the early stages of relativistic heavy-ion collisions. Phys. Rev. C, 103(2), 2021, 024904, 10.1103/PhysRevC.103.024904 arXiv:2008.02902.[1157] Garcia-Montero, Oscar, Non-equilibrium photons from the bottom-up thermalization scenario. Ann. Phys., 443, 2022, 168984, 10.1016/j.aop.2022.168984 arXiv:1909.12294.[1158] Khachatryan, Vladimir, Schenke, Bjoern, Chiu, Mickey, Drees, Axel, Hemmick, Thomas K., Novitzky, Norbert, Photons from thermalizing matter in heavy ion collisions. Nucl. Phys. A 978 (2018), 123–159, 10.1016/j.nuclphysa.2018.07.013 arXiv:1804.09257.[1159] Coquet, Maurice, Du, Xiaojian, Ollitrault, Jean-Yves, Schlichting, Soeren, Winn, Michael, Transverse mass scaling of dilepton radiation off a quark-gluon plasma. Nucl. Phys. A, 1030, 2023, 122579, 10.1016/j.nuclphysa.2022.122579 arXiv:2112.13876.[1160] Shen, C., Paquet, J.F., Denicol, G.S., Jeon, S., Gale, C., Thermal photon radiation in high multiplicity p+Pb collisions at the Large Hadron Collider. Phys. Rev. Lett., 116(7), 2016, 072301, 10.1103/PhysRevLett.116.072301 arXiv:1504.07989.[1161] Endres, Stephan, van Hees, Hendrik, Weil, Janus, Bleicher, Marcus, Dilepton production and reaction dynamics in heavy-ion collisions at SIS energies from coarse-grained transport simulations. Phys. Rev. C, 92(1), 2015, 014911, 10.1103/PhysRevC.92.014911 arXiv:1505.06131.[1162] Galatyuk, Tetyana, Hohler, Paul M., Rapp, Ralf, Seck, Florian, Stroth, Joachim, Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A, 52(5), 2016, 131, 10.1140/epja/i2016-16131-1 arXiv:1512.08688.[1163] Staudenmaier, Jan, Weil, Janus, Steinberg, Vinzent, Endres, Stephan, Petersen, Hannah, Dilepton production and resonance properties within a new hadronic transport approach in the context of the GSI-HADES experimental data. Phys. Rev. C, 98(5), 2018, 054908, 10.1103/PhysRevC.98.054908 arXiv:1711.10297.[1164] Adamczewski-Musch, J., et al. Probing dense baryon-rich matter with virtual photons. Nat. Phys. 15:10 (2019), 1040–1045, 10.1038/s41567-019-0583-8.[1165] Arnaldi, R., et al. Evidence for the production of thermal-like muon pairs with masses above 1-GeV/c**2 in 158-A-GeV Indium-Indium collisions. Eur. Phys. J. C 59 (2009), 607–623, 10.1140/epjc/s10052-008-0857-2 arXiv:0810.3204.[1166] Seck, Florian, Galatyuk, Tetyana, Mukherjee, Ayon, Rapp, Ralf, Steinheimer, Jan, Stroth, Joachim, Wiest, Maximilian, Dilepton signature of a first-order phase transition. Phys. Rev. C, 106(1), 2022, 014904, 10.1103/PhysRevC.106.014904 arXiv:2010.04614.[1167] Ahdida, C., et al. Letter of intent: the NA60+ experiment. arXiv:2212.14452, 12 2022.[1168] Ablyazimov, T., et al. Challenges in QCD matter physics –the scientific programme of the compressed baryonic matter experiment at FAIR. Eur. Phys. J. A, 53(3), 2017, 60, 10.1140/epja/i2017-12248-y arXiv:1607.01487.[1169] Letter of intent for ALICE 3: a next-generation heavy-ion experiment at the LHC. arXiv:2211.02491, 11 2022.[1170] Low, F.E., Bremsstrahlung of very low-energy quanta in elementary particle collisions. Phys. Rev. 110 (1958), 974–977, 10.1103/PhysRev.110.974.[1171] Lai, Yue Shi, Mulligan, James, Płoskoń, Mateusz, Ringer, Felix, The information content of jet quenching and machine learning assisted observable design. J. High Energy Phys., 10, 2022, 011, 10.1007/JHEP10(2022)011 arXiv:2111.14589.[1172] Brewer, Jasmine, Mazeliauskas, Aleksas, van der Schee, Wilke, Opportunities of OO and pO collisions at the LHC. Opportunities of OO and pO Collisions at the LHC, 3 2021 arXiv:2103.01939.[1173] Serenone, Willian Matioli, Barbon, João Guilherme Prado, Chinellato, David Dobrigkeit, Lisa, Michael Annan, Shen, Chun, Takahashi, Jun, Torrieri, Giorgio, Λ polarization from thermalized jet energy. Phys. Lett. B, 820, 2021, 136500, 10.1016/j.physletb.2021.136500 arXiv:2102.11919.[1174] Luo, Ao, Mao, Ya-Xian, Qin, Guang-You, Wang, En-Ke, Zhang, Han-Zhong, Enhancement of baryon-to-meson ratios around jets as a signature of medium response. Phys. Lett. B, 837, 2023, 137638, 10.1016/j.physletb.2022.137638 arXiv:2109.14314.[1175] sPHENIX Collaboration. sPHENIX beam use proposal. https://indico.bnl.gov/event/15148/attachments/40846/68568/sPHENIX_Beam_Use_Proposal_2022.pdf, 2022.[1176] Wang, Feng-Tao, Xu, Jun, Hadronization using the Wigner function approach for a multiphase transport model. Phys. Rev. C, 100(6), 2019, 064909, 10.1103/PhysRevC.100.064909 arXiv:1908.04956.[1177] Chien, Yang-Ting, Kang, Zhong-Bo, Ringer, Felix, Vitev, Ivan, Xing, Hongxi, Jet fragmentation functions in proton-proton collisions using soft-collinear effective theory. J. High Energy Phys., 05, 2016, 125, 10.1007/JHEP05(2016)125 arXiv:1512.06851.[1178] Anderle, Daniele P., Kaufmann, Tom, Stratmann, Marco, Ringer, Felix, Vitev, Ivan, Using hadron-in-jet data in a global analysis of D fragmentation functions. Phys. Rev. D, 96(3), 2017, 034028, 10.1103/PhysRevD.96.034028 arXiv:1706.09857.[1179] LHCb projections for proton-lead collisions during LHC Runs 3 and 4., 11 2018.[1180] Snowmass White Paper Contribution: Physics with the Phase-2 ATLAS and CMS Detectors., 2022.[1181] Aaij, Roel, et al. Physics case for an LHCb upgrade II - opportunities in flavour physics, and beyond, in the HL-LHC era. arXiv:1808.08865, 8 2018.[1182] Butler, Joel N., Tabarelli de Fatis, Tommaso, A MIP Timing Detector for the CMS Phase-2 Upgrade., 2019.[1183] Li, Hai Tao, Liu, Ze Long, Vitev, Ivan, Heavy meson tomography of cold nuclear matter at the electron-ion collider. Phys. Lett. B, 816, 2021, 136261, 10.1016/j.physletb.2021.136261 arXiv:2007.10994.[1184] Li, Hai Tao, Liu, Ze Long, Vitev, Ivan, Heavy flavor jet production and substructure in electron-nucleus collisions. Phys. Lett. B, 827, 2022, 137007, 10.1016/j.physletb.2022.137007 arXiv:2108.07809.[1185] Observation of the ϒ(3S) meson and sequential suppression of ϒ states in PbPb collisions at s

NN

=5.02TeV. Technical report, 2022, CERN, Geneva https://cds.cern.ch/record/2805926.[1186] Binder, Tobias, Mukaida, Kyohei, Scheihing-Hitschfeld, Bruno, Yao, Xiaojun, Non-Abelian electric field correlator at NLO for dark matter relic abundance and quarkonium transport. J. High Energy Phys., 01, 2022, 137, 10.1007/JHEP01(2022)137 arXiv:2107.03945.[1187] LHCb Collaboration. LHCb SMOG upgrade. CERN-LHCC-2019-005 https://cds.cern.ch/record/2673690?ln=en.[1188] CMS Collaboration. Technical Proposal for the Phase-II Upgrade of the CMS Detector. CERN-LHCC-2015-010, 2015.[1189] Brodsky, S.J., Hoyer, P., Peterson, C., Sakai, N., The intrinsic charm of the proton. Phys. Lett. B 93 (1980), 451–455, 10.1016/0370-2693(80)90364-0.[1190] Brodsky, Stanley J., Peterson, C., Sakai, N., Intrinsic heavy quark states. Phys. Rev. D, 23, 1981, 2745, 10.1103/PhysRevD.23.2745.[1191] Hobbs, T.J., Londergan, J.T., Melnitchouk, W., Phenomenology of nonperturbative charm in the nucleon. Phys. Rev. D, 89(7), 2014, 074008, 10.1103/PhysRevD.89.074008 arXiv:1311.1578.[1192] Brodsky, Stanley J., Hoyer, Paul, Mueller, Alfred H., Tang, Wai-Keung, New QCD production mechanisms for hard processes at large x. Nucl. Phys. B 369 (1992), 519–542, 10.1016/0550-3213(92)90278-J.[1193] Badier, J., et al. Experimental J/psi hadronic production from 150-GeV/c to 280-GeV/c. Z. Phys. C, 20, 1983, 101, 10.1007/BF01573213.[1194] Aubert, J.J., et al. An experimental limit on the intrinsic charm component of the nucleon. Phys. Lett. B 110 (1982), 73–76, 10.1016/0370-2693(82)90955-8.[1195] Chauvat, P., et al. Production of Λ(c) with large X(f) at the ISR. Phys. Lett. B, 199, 1987, 304, 10.1016/0370-2693(87)91379-7.[1196] Aaij, Roel, et al. Study of Z bosons produced in association with charm in the forward region. Phys. Rev. Lett., 128(8), 2022, 082001, 10.1103/PhysRevLett.128.082001 arXiv:2109.08084.[1197] Vogt, R., Brodsky, Stanley J., Hoyer, Paul, Systematics of J / psi production in nuclear collisions. Nucl. Phys. B 360 (1991), 67–96, 10.1016/0550-3213(91)90435-Z.[1198] Vogt, R., Limits on intrinsic charm production from the SeaQuest experiment. Phys. Rev. C, 103(3), 2021, 035204, 10.1103/PhysRevC.103.035204 arXiv:2101.02858.[1199] Vogt, R., Energy dependence of intrinsic charm production: determining the best energy for observation. Phys. Rev. C, 106(2), 2022, 025201, 10.1103/PhysRevC.106.025201 arXiv:2207.04347.[1200] Ball, Richard D., Candido, Alessandro, Cruz-Martinez, Juan, Forte, Stefano, Giani, Tommaso, Hekhorn, Felix, Kudashkin, Kirill, Magni, Giacomo, Rojo, Juan, Evidence for intrinsic charm quarks in the proton. Nature 608:7923 (2022), 483–487, 10.1038/s41586-022-04998-2 arXiv:2208.08372.[1201] Pumplin, J., Lai, H.L., Tung, W.K., The charm parton content of the nucleon. Phys. Rev. D, 75, 2007, 054029, 10.1103/PhysRevD.75.054029 arXiv:hep-ph/0701220.[1202] Jimenez-Delgado, P., Hobbs, T.J., Londergan, J.T., Melnitchouk, W., New limits on intrinsic charm in the nucleon from global analysis of parton distributions. Phys. Rev. Lett., 114(8), 2015, 082002, 10.1103/PhysRevLett.114.082002 arXiv:1408.1708.[1203] Hou, Tie-Jiun, Dulat, Sayipjamal, Gao, Jun, Guzzi, Marco, Huston, Joey, Nadolsky, Pavel, Schmidt, Carl, Winter, Jan, Xie, Keping, Yuan, C.P., CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis. J. High Energy Phys., 02, 2018, 059, 10.1007/JHEP02(2018)059 arXiv:1707.00657.[1204] Guzzi, Marco, Hobbs, T.J., Xie, Keping, Huston, Joey, Nadolsky, Pavel, Yuan, C.P., The persistent nonperturbative charm enigma. arXiv:2211.01387, 11 2022.[1205] Aaij, Roel, et al. First measurement of charm production in its fixed-target configuration at the LHC. Phys. Rev. Lett., 122(13), 2019, 132002, 10.1103/PhysRevLett.122.132002 arXiv:1810.07907.[1206] Usai, Gianluca, et al. Study of hard and electromagnetic processes at CERN-SPS energies: an investigation of the high-μ

B

region of the QCD phase diagram with NA60+. JPS Conf. Proc., 33, 2021, 011113, 10.7566/JPSCP.33.011113 arXiv:1812.07948.[1207] Klein, Spencer R., Challenges to the Good-Walker paradigm in coherent and incoherent photoproduction. arXiv:2301.01408, 1 2023.[1208] Apolinário, Liliana, Lee, Yen-Jie, Winn, Michael, Heavy quarks and jets as probes of the QGP. Prog. Part. Nucl. Phys., 127, 2022, 103990, 10.1016/j.ppnp.2022.103990 arXiv:2203.16352.[1209] Ehlers, Raymond, Bayesian analysis of QGP jet transport using multi-scale modeling applied to inclusive hadron and reconstructed jet data. 29th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, 8 2022 arXiv:2208.07950.[1210] Paukkunen, Hannu, Neutron skin and centrality classification in high-energy heavy-ion collisions at the LHC. Phys. Lett. B 745 (2015), 73–78, 10.1016/j.physletb.2015.04.037 arXiv:1503.02448.[1211] Helenius, Ilkka, Paukkunen, Hannu, Eskola, Kari J., Neutron-skin effect in direct-photon and charged hadron-production in Pb+Pb collisions at the LHC. Eur. Phys. J. C, 77(3), 2017, 148, 10.1140/epjc/s10052-017-4709-9 arXiv:1606.06910.[1212] Jonas, Florian, Loizides, Constantin, Centrality dependence of electroweak boson production in PbPb collisions at the CERN Large Hadron Collider. Phys. Rev. C, 104(4), 2021, 044905, 10.1103/PhysRevC.104.044905 arXiv:2104.14903.[1213] ALICE Collaboration. ALICE forward calorimeter (FoCal) science proposal. https://sites.google.com/lbl.gov/alice-usa/projects, 2023.[1214] Wang, Ren-jie, Pu, Shi, Wang, Qun, Lepton pair production in ultraperipheral collisions. Phys. Rev. D, 104(5), 2021, 056011, 10.1103/PhysRevD.104.056011 arXiv:2106.05462.[1215] Klein, Spencer, Mueller, A.H., Xiao, Bo-Wen, Yuan, Feng, Lepton pair production through two photon process in heavy ion collisions. Phys. Rev. D, 102(9), 2020, 094013, 10.1103/PhysRevD.102.094013 arXiv:2003.02947.[1216] Sirunyan, Albert M., et al. Observation of forward neutron multiplicity dependence of dimuon acoplanarity in ultraperipheral Pb-Pb collisions at s

NN

=5.02 TeV. Phys. Rev. Lett., 127(12), 2021, 122001, 10.1103/PhysRevLett.127.122001 arXiv:2011.05239.[1217] Sun, Ze-hao, Zheng, Du-xin, Zhou, Jian, Zhou, Ya-jin, Studying Coulomb correction at EIC and EicC. Phys. Lett. B, 808, 2020, 135679, 10.1016/j.physletb.2020.135679 arXiv:2002.07373.[1218] Zha, Wangmei, Tang, Zebo, Discovery of higher-order quantum electrodynamics effect for the vacuum pair production. J. High Energy Phys., 08, 2021, 083, 10.1007/JHEP08(2021)083 arXiv:2103.04605.[1219] Aaboud, Morad, et al. Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb+Pb collisions at s

NN

=5.02 TeV with the ATLAS detector. Phys. Rev. Lett., 121(21), 2018, 212301, 10.1103/PhysRevLett.121.212301 arXiv:1806.08708.[1220] Klein, Spencer, Mueller, A.H., Xiao, Bo-Wen, Yuan, Feng, Acoplanarity of a lepton pair to probe the electromagnetic property of quark matter. Phys. Rev. Lett., 122(13), 2019, 132301, 10.1103/PhysRevLett.122.132301 arXiv:1811.05519.[1221] Wang, Zeyan, Zhao, Jiaxing, Greiner, Carsten, Xu, Zhe, Zhuang, Pengfei, Incomplete electromagnetic response of hot QCD matter. Phys. Rev. C, 105(4), 2022, L041901, 10.1103/PhysRevC.105.L041901 arXiv:2110.14302.[1222] Kłusek-Gawenda, Mariola, Rapp, Ralf, Schäfer, Wolfgang, Szczurek, Antoni, Dilepton radiation in heavy-ion collisions at small transverse momentum. Phys. Lett. B 790 (2019), 339–344, 10.1016/j.physletb.2019.01.035 arXiv:1809.07049.[1223] Wang, Xiaofeng, Brandenburg, James Daniel, Ruan, Lijuan, Shao, Fenglan, Xu, Zhangbu, Yang, Chi, Zha, Wangmei, Energy dependence of the Breit-Wheeler process in heavy-ion collisions and its application to nuclear charge radius measurements. arXiv:2207.05595, 7 2022.[1224] Budker, Dmitry, et al. Expanding nuclear physics horizons with the gamma factory. https://doi.org/10.1002/andp.202100284 arXiv:2106.06584, 6 2021.[1225] Xing, Hongxi, Zhang, Cheng, Zhou, Jian, Zhou, Ya-Jin, The cos 2ϕ azimuthal asymmetry in ρ0 meson production in ultraperipheral heavy ion collisions. J. High Energy Phys., 10, 2020, 064, 10.1007/JHEP10(2020)064 arXiv:2006.06206.[1226] Bor, Jelle, Boer, Daniël, TMD evolution study of the cos2ϕ azimuthal asymmetry in unpolarized J/ψ production at EIC. Phys. Rev. D, 106(1), 2022, 014030, 10.1103/PhysRevD.106.014030 arXiv:2204.01527.[1227] Zha, Wangmei, Ruan, Lijuan, Tang, Zebo, Xu, Zhangbu, Yang, Shuai, Double-slit experiment at Fermi scale: coherent photoproduction in heavy-ion collisions. Phys. Rev. C, 99(6), 2019, 061901, 10.1103/PhysRevC.99.061901 arXiv:1810.10694.[1228] Zha, Wangmei, Brandenburg, James Daniel, Ruan, Lijuan, Tang, Zebo, Xu, Zhangbu, Exploring the double-slit interference with linearly polarized photons. Phys. Rev. D, 103(3), 2021, 033007, 10.1103/PhysRevD.103.033007 arXiv:2006.12099.[1229] Dyndal, Mateusz, Klusek-Gawenda, Mariola, Schott, Matthias, Szczurek, Antoni, Anomalous electromagnetic moments of τ lepton in γγ→τ+τ reaction in Pb+Pb collisions at the LHC. Phys. Lett. B, 809, 2020, 135682, 10.1016/j.physletb.2020.135682 arXiv:2002.05503.[1230] Xu, Isabel, Lewis, Nicole, Wang, Xiaofeng, Brandenburg, James Daniel, Ruan, Lijuan, Search for dark photons in γγ→e+e at RHIC. arXiv:2211.02132, 11 2022.[1231] Brandenburg, James Daniel, Lewis, Nicole, Tribedy, Prithwish, Xu, Zhangbu, Search for baryon junctions in photonuclear processes and isobar collisions at RHIC. arXiv:2205.05685, 5 2022.[1232] Gayoso, C. Ayerbe, et al. Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A, 57(12), 2021, 342, 10.1140/epja/s10050-021-00625-2 arXiv:2107.06748.[1233] Cebra, Daniel, Sweger, Zachary, Dong, Xin, Ji, Yuanjing, Klein, Spencer R., Backward-angle (u-channel) production at an electron-ion collider. Phys. Rev. C, 106(1), 2022, 015204, 10.1103/PhysRevC.106.015204 arXiv:2204.07915.[1234] Huang, Shengli, Chen, Zhenyu, Jia, Jiangyong, Li, Wei, Disentangling contributions to small-system collectivity via scans of light nucleus-nucleus collisions. Phys. Rev. C, 101(2), 2020, 021901, 10.1103/PhysRevC.101.021901 arXiv:1904.10415.[1235] Zhao, Wenbin, Ryu, Sangwook, Shen, Chun, Schenke, Björn, 3D structure of anisotropic flow in small collision systems at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C, 107(1), 2023, 014904, 10.1103/PhysRevC.107.014904 arXiv:2211.16376.[1236] Liu, Yu-Fei, Xing, Wen-Jing, Wu, Xiang-Yu, Qin, Guang-You, Cao, Shanshan, Xing, Hongxi, Heavy and light flavor jet quenching in different collision systems at energies available at the CERN Large Hadron Collider. Phys. Rev. C, 105(4), 2022, 044904, 10.1103/PhysRevC.105.044904 arXiv:2107.01522.[1237] Katz, Roland, Prado, Caio A.G., Noronha-Hostler, Jacquelyn, Suaide, Alexandre A.P., System-size scan of D meson R

AA

and v

n

using PbPb, XeXe, ArAr, and OO collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C, 102(4), 2020, 041901, 10.1103/PhysRevC.102.041901 arXiv:1907.03308.[1238] Ke, Weiyao, Vitev, Ivan, Searching for QGP droplets with high-p

T

hadrons and heavy flavor. arXiv:2204.00634, 4 2022.[1239] Lonardoni, Diego, Lovato, Alessandro, Gandolfi, Stefano, Pederiva, Francesco, Hyperon puzzle: hints from quantum Monte Carlo calculations. Phys. Rev. Lett., 114(9), 2015, 092301, 10.1103/PhysRevLett.114.092301 arXiv:1407.4448.[1240] Alice Collaboration. Unveiling the strong interaction among hadrons at the LHC. Nature 588 (2020), 232–238, 10.1038/s41586-020-3001-6 Nature, 590, 2021, E13 (Erratum) arXiv:2005.11495.[1241] http://www.nupecc.org, 2017.[1242] http://nupecc.org/pub/lrp17/lrp2017.pdf, 2017.[1243] Galatyuk, Tetyana, Future facilities for high μ

B

physics. Nucl. Phys. A 982 (2019), 163–169, 10.1016/j.nuclphysa.2018.11.025.[1244] f*ckushima, Kenji, Mohanty, Bedangadas, Xu, Nu, Little-bang and femto-nova in nucleus-nucleus collisions. AAPPS Bull., 31, 2021, 1, 10.1007/s43673-021-00002-7 arXiv:2009.03006.[1245] Kharzeev, Dmitri E., Liao, Jinfeng, Shi, Shuzhe, Implications of the isobar-run results for the chiral magnetic effect in heavy-ion collisions. Phys. Rev. C, 106(5), 2022, L051903, 10.1103/PhysRevC.106.L051903 arXiv:2205.00120.[1246] STAR Collaboration. STAR beam use request 23-25. BNL PAC https://indico.bnl.gov/event/15148/attachments/40846/68609/STAR_BUR_Runs23_25___2022%20%281%29.pdf, 2022.[1247] Ikeda, Kazuki, Kharzeev, Dmitri E., Kikuchi, Yuta, Real-time dynamics of Chern-Simons fluctuations near a critical point. Phys. Rev. D, 103(7), 2021, L071502, 10.1103/PhysRevD.103.L071502 arXiv:2012.02926.[1248] Cartwright, Casey, Kaminski, Matthias, Schenke, Bjoern, Energy dependence of the chiral magnetic effect in expanding holographic plasma. Phys. Rev. C, 105(3), 2022, 034903, 10.1103/PhysRevC.105.034903 arXiv:2112.13857.[1249] Search for the chiral magnetic effect in Au+Au collisions at s

NN

=27 GeV with the STAR forward event plane detectors. arXiv:2209.03467, 9 2022.[1250] Milton, Ryan, Wang, Gang, Sergeeva, Maria, Shi, Shuzhe, Liao, Jinfeng, Huang, Huan Zhong, Utilization of event shape in search of the chiral magnetic effect in heavy-ion collisions. Phys. Rev. C, 104(6), 2021, 064906, 10.1103/PhysRevC.104.064906 arXiv:2110.01435.[1251] Feng, Yicheng, Lin, Yufu, Zhao, Jie, Wang, Fuqiang, Revisit the chiral magnetic effect expectation in isobaric collisions at the relativistic heavy ion collider. Phys. Lett. B, 820, 2021, 136549, 10.1016/j.physletb.2021.136549 arXiv:2103.10378.[1252] Search for the chiral magnetic wave using anisotropic flow of identified particles at RHIC. arXiv:2210.14027, 10 2022.[1253] Finch, L.E., Murray, S.J., Investigating local parity violation in heavy-ion collisions using Λ helicity. Phys. Rev. C, 96(4), 2017, 044911, 10.1103/PhysRevC.96.044911 arXiv:1801.06476.[1254] Jiang, Yin, Lin, Zi-Wei, Liao, Jinfeng, Rotating quark-gluon plasma in relativistic heavy ion collisions. Phys. Rev. C, 94(4), 2016, 044910, 10.1103/PhysRevC.94.044910 Phys. Rev. C, 95, 2017, 049904 (Erratum) arXiv:1602.06580.[1255] Liang, Zuo-Tang, Song, Jun, Upsal, Isaac, Wang, Qun, Xu, Zhang-Bu, Rapidity dependence of global polarization in heavy ion collisions. Chin. Phys. C, 45(1), 2021, 014102, 10.1088/1674-1137/abc065 arXiv:1912.10223.[1256] Ivanov, Yu B., Soldatov, A.A., Vortex rings in fragmentation regions in heavy-ion collisions at s

NN

= 39 GeV. Phys. Rev. C, 97(4), 2018, 044915, 10.1103/PhysRevC.97.044915 arXiv:1803.01525.[1257] Wu, Hong-Zhong, Pang, Long-Gang, Huang, Xu-Guang, Wang, Qun, Local spin polarization in high energy heavy ion collisions. Phys. Rev. Res., 1, 2019, 033058, 10.1103/PhysRevResearch.1.033058 arXiv:1906.09385.[1258] Ivanov, Yu B., Toneev, V.D., Soldatov, A.A., Estimates of hyperon polarization in heavy-ion collisions at collision energies s

NN

= 4–40 GeV. Phys. Rev. C, 100(1), 2019, 014908, 10.1103/PhysRevC.100.014908 arXiv:1903.05455.[1259] Ivanov, Yu.B., Soldatov, A.A., Correlation between global polarization, angular momentum, and flow in heavy-ion collisions. Phys. Rev. C, 102(2), 2020, 024916, 10.1103/PhysRevC.102.024916 arXiv:2004.05166.[1260] Deng, Wei-Tian, Huang, Xu-Guang, Vorticity in heavy-ion collisions. Phys. Rev. C, 93(6), 2016, 064907, 10.1103/PhysRevC.93.064907 arXiv:1603.06117.[1261] Wei, De-Xian, Deng, Wei-Tian, Huang, Xu-Guang, Thermal vorticity and spin polarization in heavy-ion collisions. Phys. Rev. C, 99(1), 2019, 014905, 10.1103/PhysRevC.99.014905 arXiv:1810.00151.[1262] Xie, Yilong, Wang, Dujuan, Csernai, Laszlo Pal, Fluid dynamics study of the Λ polarization for Au + Au collisions at s

NN

=200 GeV. Eur. Phys. J. C, 80(1), 2020, 39, 10.1140/epjc/s10052-019-7576-8 arXiv:1907.00773.[1263] Baznat, Mircea I., Gudima, Konstantin K., Sorin, Alexander S., Teryaev, O.V., Femto-vortex sheets and hyperon polarization in heavy-ion collisions. Phys. Rev. C, 93(3), 2016, 031902, 10.1103/PhysRevC.93.031902 arXiv:1507.04652.[1264] Teryaev, Oleg, Usubov, Rahim, Vorticity and hydrodynamic helicity in heavy-ion collisions in the hadron-string dynamics model. Phys. Rev. C, 92(1), 2015, 014906, 10.1103/PhysRevC.92.014906.[1265] Xia, Xiao-Liang, Li, Hui, Tang, Ze-Bo, Wang, Qun, Probing vorticity structure in heavy-ion collisions by local Λ polarization. Phys. Rev. C, 98, 2018, 024905, 10.1103/PhysRevC.98.024905 arXiv:1803.00867.[1266] Betz, Barbara, Gyulassy, Miklos, Torrieri, Giorgio, Polarization probes of vorticity in heavy ion collisions. Phys. Rev. C, 76, 2007, 044901, 10.1103/PhysRevC.76.044901 arXiv:0708.0035.[1267] Tachibana, Yasuki, Hirano, Tetsufumi, Emission of low momentum particles at large angles from. Jet. Nucl. Phys. A 904-905 (2013), 1023c–1026c, 10.1016/j.nuclphysa.2013.02.189 arXiv:1210.5567.[1268] Acharya, Shreyasi, et al. Evidence of spin-orbital angular momentum interactions in relativistic heavy-ion collisions. Phys. Rev. Lett., 125(1), 2020, 012301, 10.1103/PhysRevLett.125.012301 arXiv:1910.14408.[1269] Abdallah, M.S., et al. Pattern of global spin alignment of ϕ and K⁎0 mesons in heavy-ion collisions. Nature 614:7947 (2023), 244–248, 10.1038/s41586-022-05557-5 arXiv:2204.02302.[1270] Lisa, Michael Annan, Barbon, João Guilherme Prado, Chinellato, David Dobrigkeit, Serenone, Willian Matioli, Shen, Chun, Takahashi, Jun, Torrieri, Giorgio, Vortex rings from high energy central p+A collisions. Phys. Rev. C, 104(1), 2021, 011901, 10.1103/PhysRevC.104.L011901 arXiv:2101.10872.[1271] STAR Collaboration. The STAR beam use request for run-23-25. https://drupal.star.bnl.gov/star/starnotes/public/sn0793, 2022 https://drupal.star.bnl.gov/STAR/starnotes/public/SN0793.[1272] BNL Program Advisory Committee Report. https://www.bnl.gov/npp/docs/2022-npp-pac-recommendations-final.pdf, 2022.[1273] Abelev, B., et al. Upgrade of the ALICE experiment: letter of intent. J. Phys. G, 41, 2014, 087001, 10.1088/0954-3899/41/8/087001.[1274] Bediaga, I., et al. Framework TDR for the LHCb Upgrade: Technical Design Report., 4 2012.[1275] LHCb Trigger and Online Upgrade Technical Design Report., 5 2014.[1276] Letter of Intent: a Forward Calorimeter (FoCal) in the ALICE experiment., 6 2020.[1277] Alizadehvandchali, N., et al. Hot and cold QCD white paper from ALICE-USA: input for 2023 U.S. long range plan for nuclear science. arXiv:2212.00512, 12 2022.[1278] Future physics potential of LHCb., 2022.[1279] Arrington, J., et al. Physics with CEBAF at 12 GeV and future opportunities. Prog. Part. Nucl. Phys., 127, 2022, 103985, 10.1016/j.ppnp.2022.103985 arXiv:2112.00060.[1280] Arrington, J., et al. The solenoidal large intensity device (SoLID) for JLab 12 GeV. arXiv:2209.13357, 9 2022.[1281] Gasparian, A., et al. PRad-II: a new upgraded high precision measurement of the proton charge radius. arXiv:2009.10510, 9 2020.[1282] Melendez, J.A., Furnstahl, R.J., Griesshammer, H.W., McGovern, J.A., Phillips, D.R., Pratola, M.T., Designing optimal experiments: an application to proton Compton scattering. Eur. Phys. J. A, 57(3), 2021, 81, 10.1140/epja/s10050-021-00382-2 arXiv:2004.11307.[1283] Pasquini, Barbara, Vanderhaeghen, Marc, Virtual Compton scattering at low energies with a positron beam. Eur. Phys. J. A, 57(11), 2021, 316, 10.1140/epja/s10050-021-00630-5 arXiv:2106.05683.[1284] Esser, A., et al. Beam-normal single spin asymmetry in elastic electron scattering off 28Si and 90Zr. Phys. Lett. B, 808, 2020, 135664, 10.1016/j.physletb.2020.135664 arXiv:2004.14682.[1285] Ríos, D. Balaguer, et al. New measurements of the beam normal spin asymmetries at large backward angles with hydrogen and deuterium targets. Phys. Rev. Lett., 119(1), 2017, 012501, 10.1103/PhysRevLett.119.012501.[1286] Gou, B., et al. Study of two-photon exchange via the beam transverse single spin asymmetry in electron-proton elastic scattering at forward angles over a wide energy range. Phys. Rev. Lett., 124(12), 2020, 122003, 10.1103/PhysRevLett.124.122003 arXiv:2002.06252.[1287] Androić, D., et al. Precision measurement of the beam-normal single-spin asymmetry in forward-angle elastic electron-proton scattering. Phys. Rev. Lett., 125(11), 2020, 112502, 10.1103/PhysRevLett.125.112502 arXiv:2006.12435.[1288] Androić, D., et al. Measurement of the beam-normal single-spin asymmetry for elastic electron scattering from 12C and 27Al. Phys. Rev. C, 104, 2021, 014606, 10.1103/PhysRevC.104.014606 arXiv:2103.09758.[1289] Adhikari, D., et al. New measurements of the beam-normal single spin asymmetry in elastic electron scattering over a range of spin-0 nuclei. Phys. Rev. Lett., 128(14), 2022, 142501, 10.1103/PhysRevLett.128.142501 arXiv:2111.04250.[1290] Airapetian, A., et al. Search for a two-photon exchange contribution to inclusive deep-inelastic scattering. Phys. Lett. B 682 (2010), 351–354, 10.1016/j.physletb.2009.11.041 arXiv:0907.5369.[1291] Katich, J., et al. Measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the reaction He↑3(e,e)X. Phys. Rev. Lett., 113(2), 2014, 022502, 10.1103/PhysRevLett.113.022502 arXiv:1311.0197.[1292] Zhang, Y.W., et al. Measurement of the target-normal single-spin asymmetry in quasielastic scattering from the reaction 3He(e,e). Phys. Rev. Lett., 115(17), 2015, 172502, 10.1103/PhysRevLett.115.172502 arXiv:1502.02636.[1293] Aaltonen, T., et al. High-precision measurement of the W boson mass with the CDF II detector. Science 376:6589 (2022), 170–176, 10.1126/science.abk1781.[1294] Belitsky, Andrei V., Ji, Xiang-dong, Yuan, Feng, Quark imaging in the proton via quantum phase space distributions. Phys. Rev. D, 69, 2004, 074014, 10.1103/PhysRevD.69.074014 arXiv:hep-ph/0307383.[1295] Moutarde, H., Sznajder, P., Wagner, J., Unbiased determination of DVCS Compton form factors. Eur. Phys. J. C, 79(7), 2019, 614, 10.1140/epjc/s10052-019-7117-5 arXiv:1905.02089.[1296] Defurne, M., et al. E00-110 experiment at Jefferson Lab Hall A: deeply virtual Compton scattering off the proton at 6 GeV. Phys. Rev. C, 92(5), 2015, 055202, 10.1103/PhysRevC.92.055202 arXiv:1504.05453.[1297] Airapetian, A., et al. Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target. Phys. Rev. Lett., 94, 2005, 012002, 10.1103/PhysRevLett.94.012002 arXiv:hep-ex/0408013.[1298] Adolph, C., et al. Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons. Nucl. Phys. B 886 (2014), 1046–1077, 10.1016/j.nuclphysb.2014.07.019 arXiv:1401.6284.[1299] Qian, X., et al. Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target. Phys. Rev. Lett., 107, 2011, 072003, 10.1103/PhysRevLett.107.072003 arXiv:1106.0363.[1300] Ye, Zhihong, Sato, Nobuo, Allada, Kalyan, Liu, Tianbo, Chen, Jian-Ping, Gao, Haiyan, Kang, Zhong-Bo, Prokudin, Alexei, Sun, Peng, Yuan, Feng, Unveiling the nucleon tensor charge at Jefferson Lab: a study of the SoLID case. Phys. Lett. B 767 (2017), 91–98, 10.1016/j.physletb.2017.01.046 arXiv:1609.02449.[1301] Aguilar, Arlene C., et al. Pion and kaon structure at the electron-ion collider. Eur. Phys. J. A, 55(10), 2019, 190, 10.1140/epja/i2019-12885-0 arXiv:1907.08218.[1302] Arrington, J., et al. Revealing the structure of light pseudoscalar mesons at the electron–ion collider. J. Phys. G, 48(7), 2021, 075106, 10.1088/1361-6471/abf5c3 arXiv:2102.11788.[1303] Carmignotto, M., et al. Separated kaon electroproduction cross section and the kaon form factor from 6 GeV JLab data. Phys. Rev. C, 97(2), 2018, 025204, 10.1103/PhysRevC.97.025204 arXiv:1801.01536.[1304] Horn, T., et al. Determination of the charged pion form factor at Q**2 = 1.60 and 2.45-(GeV/c)**2. Phys. Rev. Lett., 97, 2006, 192001, 10.1103/PhysRevLett.97.192001 arXiv:nucl-ex/0607005.[1305] Horn, T., et al. Scaling study of the pion electroproduction cross sections and the pion form factor. Phys. Rev. C, 78, 2008, 058201, 10.1103/PhysRevC.78.058201 arXiv:0707.1794.[1306] Huber, G.M., et al. Charged pion form-factor between Q**2 = 0.60-GeV**2 and 2.45-GeV**2. II. Determination of, and results for, the pion form-factor. Phys. Rev. C, 78, 2008, 045203, 10.1103/PhysRevC.78.045203 arXiv:0809.3052.[1307] Horn, T., Global analysis of exclusive kaon and pion electroproduction. Phys. Rev. C, 85, 2012, 018202, 10.1103/PhysRevC.85.018202.[1308] Huber, G.M., et al. Separated response function ratios in exclusive, forward π± electroproduction. Phys. Rev. Lett., 112(18), 2014, 182501, 10.1103/PhysRevLett.112.182501 arXiv:1404.3985.[1309] Huber, G.M., et al. Separated response functions in exclusive, forward π± electroproduction on deuterium. Phys. Rev. C, 91(1), 2015, 015202, 10.1103/PhysRevC.91.015202 arXiv:1412.5140.[1310] Benesch, J., et al. Jefferson Lab Hall C: precision physics at the luminosity frontier. arXiv:2209.11838, 9 2022.[1311] Godfrey, S., Isgur, Nathan, Mesons in a relativized quark model with chromodynamics. Phys. Rev. D 32 (1985), 189–231, 10.1103/PhysRevD.32.189.[1312] Capstick, Simon, Isgur, Nathan, Baryons in a relativized quark model with chromodynamics. Phys. Rev. D 34:9 (1986), 2809–2835, 10.1103/physrevd.34.2809.[1313] Brodsky, S.J., et al. Strong QCD from hadron structure experiments: Newport news, VA, USA, November 4-8, 2019. Int. J. Mod. Phys. E, 29(08), 2020, 2030006, 10.1142/S0218301320300064 arXiv:2006.06802.[1314] Aznauryan, I.G., Burkert, V.D., Electroexcitation of nucleon resonances. Prog. Part. Nucl. Phys. 67 (2012), 1–54, 10.1016/j.ppnp.2011.08.001 arXiv:1109.1720.[1315] Carman, D.S., Joo, K., Mokeev, V.I., Strong QCD insights from excited nucleon structure studies with CLAS and CLAS12. Few-Body Syst., 61(3), 2020, 29.[1316] Mokeev, V.I., Carman, D.S., Photo- and electrocouplings of nucleon resonances. Few-Body Syst., 63(3), 2022, 59.[1317] Aubert, J.J., et al. The ratio of the nucleon structure functions F2

n

for iron and deuterium. Phys. Lett. B 123 (1983), 275–278, 10.1016/0370-2693(83)90437-9.[1318] sPHENIX Collaboration. sPHENIX beam use proposal. BNL PAC https://indico.bnl.gov/event/15148/attachments/40846/68568/sPHENIX_Beam_Use_Proposal_2022.pdf, 2022.[1319] Aaij, Roel, et al. Precision luminosity measurements at LHCb. J. Instrum., 9(12), 2014, P12005, 10.1088/1748-0221/9/12/P12005 arXiv:1410.0149.[1320] Aaij, Roel, et al. Measurement of antiproton production in pHe collisions at s

NN

=110 GeV. Phys. Rev. Lett., 121(22), 2018, 222001, 10.1103/PhysRevLett.121.222001 arXiv:1808.06127.[1321] Open charm production and asymmetry in pNe collisions at s

NN

= 68.5 GeV. arXiv:2211.11633, 11 2022.[1322] Charmonium production in pNe collisions at s

NN

=68.5 GeV. arXiv:2211.11645, 11 2022.[1323] Loizides, Constantin, “QM19 summary talk”: outlook and future of heavy-ion collisions. Nucl. Phys. A, 1005, 2021, 121964, 10.1016/j.nuclphysa.2020.121964 arXiv:2007.00710.[1324] Aidala, C.A., et al. The LHCSpin project. arXiv:1901.08002, 1 2019.[1325] Santimaria, M., Carassiti, V., Ciullo, G., Di Nezza, P., Lenisa, P., Mariani, S., Pappalardo, L.L., Steffens, E., The LHCspin project. 20th International Conference on Strangeness in Quark Matter 2022, 10 2022 arXiv:2210.13997.[1326] Puckett, A.J.R., et al. Polarization transfer observables in elastic electron proton scattering at Q2=2.5, 5.2, 6.8, and 8.5 GeV2. Phys. Rev. C, 96(5), 2017, 055203, 10.1103/PhysRevC.96.055203 Phys. Rev. C, 98, 2018, 019907 (Erratum) arXiv:1707.08587.[1327] Abbott, D., et al. Production of highly polarized positrons using polarized electrons at MeV energies. Phys. Rev. Lett., 116(21), 2016, 214801, 10.1103/PhysRevLett.116.214801 arXiv:1606.08877.[1328] Habet, Sami, et al. Concept of a polarized positron source for CEBAF. JACoW IPAC2022 (2022), 457–460, 10.18429/JACoW-IPAC2022-MOPOTK012.[1329] Talman, Richard, Roberts, B.L., Grames, J., Hofler, A., Kazimi, R., Poelker, M., Suleiman, R., Resonant (longitudinal and transverse) electron polarimetry. PoS, PSTP2017, 2018, 028.[1330] Bartnik, A., et al. CBETA: first multipass superconducting linear accelerator with energy recovery. Phys. Rev. Lett., 125(4), 2020, 044803, 10.1103/PhysRevLett.125.044803.[1331] Gasser, J., Leutwyler, H., Rusetsky, A., Sum rule for the Compton amplitude and implications for the proton–neutron mass difference. Eur. Phys. J. C, 80(12), 2020, 1121, 10.1140/epjc/s10052-020-08615-2 arXiv:2008.05806.[1332] Gilman, R., et al. Technical design report for the Paul Scherrer institute experiment R-12-01.1: studying the proton “radius” puzzle with μp elastic scattering. arXiv:1709.09753, 9 2017.[1333] Cline, E., et al. Characterization of muon and electron beams in the Paul Scherrer Institute PiM1 channel for the MUSE experiment. Phys. Rev. C, 105(5), 2022, 055201, 10.1103/PhysRevC.105.055201 arXiv:2109.09508.[1334] Altmannshofer, W., et al. The Belle II physics book. PTEP, 2019(12), 2019, 123C01 PTEP, 2020, 2020, 029201, 10.1093/ptep/ptz106 (Erratum) arXiv:1808.10567.[1335] Accardi, A., et al. Opportunities for precision QCD physics in hadronization at Belle II – a snowmass whitepaper. 2022 Snowmass Summer Study, 4 2022 arXiv:2204.02280.[1336] Adams, B., et al. Letter of intent: a new QCD facility at the M2 beam line of the CERN SPS (COMPASS++/AMBER). arXiv:1808.00848, 8 2018.[1337] Alarcon, R., et al. Opportunities in nuclear science: a long-range plan for the next decade. DOE/NSF Nuclear Science Advisory Panel Report https://science.osti.gov/np/nsac/Reports/Reports-Archive#2002, 2002.[1338] Bryman, D., et al. The frontiers of nuclear science, a long range plan. DOE/NSF Nuclear Science Advisory Panel Report https://science.osti.gov/np/nsac/Reports/Reports-Archive#2007, 2007.[1339] A high luminosity, high energy electron-ion-collider: a new experimental quest to study the glue that binds us all. http://web.mit.edu/eicc/DOCUMENTS/EIC_LRP-20070424.pdf, 2007.[1340] Boer, Daniel, et al. Gluons and the quark sea at high energies: distributions, polarization, tomography. arXiv:1108.1713, 8 2011.[1341] Accardi, A., et al. Electron ion collider: the next QCD frontier: understanding the glue that binds us all. Eur. Phys. J. A, 52(9), 2016, 268, 10.1140/epja/i2016-16268-9 arXiv:1212.1701.[1342] National Academies of Sciences, Engineering, and Medicine. An Assessment of U.S.-Based Electron-Ion Collider Science. 2018, The National Academies Press, Washington, DC, 10.17226/25171.[1343] EIC User Group. White paper on the electron-ion collider in preparation for the NSAC long range plan. https://zenodo.org/record/7500024#.Y_41WBzMJkg, 2023.[1344] Borsa, Ignacio, Lucero, Gonzalo, Sassot, Rodolfo, Aschenauer, Elke C., Nunes, Ana S., Revisiting helicity parton distributions at a future electron-ion collider. Phys. Rev. D, 102(9), 2020, 094018, 10.1103/PhysRevD.102.094018 arXiv:2007.08300.[1345] Adamiak, Daniel, Kovchegov, Yuri V., Melnitchouk, W., Pitonyak, Daniel, Sato, Nobuo, Sievert, Matthew D., First analysis of world polarized DIS data with small-x helicity evolution. Phys. Rev. D, 104(3), 2021, L031501, 10.1103/PhysRevD.104.L031501 arXiv:2102.06159.[1346] Bartels, Jochen, Ermolaev, B.I., Ryskin, M.G., Flavor singlet contribution to the structure function G(1) at small x. Z. Phys. C 72 (1996), 627–635, 10.1007/BF02909194 arXiv:hep-ph/9603204.[1347] Kovchegov, Yuri V., Pitonyak, Daniel, Sievert, Matthew D., Helicity evolution at small-x. J. High Energy Phys., 01, 2016, 072, 10.1007/JHEP01(2016)072 J. High Energy Phys., 10, 2016, 148 (Erratum) arXiv:1511.06737.[1348] Hatta, Yosh*taka, Nakagawa, Yuya, Yuan, Feng, Zhao, Yong, Xiao, Bowen, Gluon orbital angular momentum at small-x. Phys. Rev. D, 95(11), 2017, 114032, 10.1103/PhysRevD.95.114032 arXiv:1612.02445.[1349] Boussarie, Renaud, Hatta, Yosh*taka, Yuan, Feng, Proton spin structure at small-x. Phys. Lett. B, 797, 2019, 134817, 10.1016/j.physletb.2019.134817 arXiv:1904.02693.[1350] Chirilli, Giovanni Antonio, High-energy operator product expansion at sub-Eikonal level. J. High Energy Phys., 06, 2021, 096, 10.1007/JHEP06(2021)096 arXiv:2101.12744.[1351] Cougoulic, Florian, Kovchegov, Yuri V., Tarasov, Andrey, Tawabutr, Yossathorn, Quark and gluon helicity evolution at small x: revised and updated. J. High Energy Phys., 07, 2022, 095, 10.1007/JHEP07(2022)095 arXiv:2204.11898.[1352] Ji, Xiangdong, Yuan, Feng, Zhao, Yong, Hunting the gluon orbital angular momentum at the electron-ion collider. Phys. Rev. Lett., 118(19), 2017, 192004, 10.1103/PhysRevLett.118.192004 arXiv:1612.02438.[1353] Bhattacharya, Shohini, Boussarie, Renaud, Hatta, Yosh*taka, Signature of the gluon orbital angular momentum. Phys. Rev. Lett., 128(18), 2022, 182002, 10.1103/PhysRevLett.128.182002 arXiv:2201.08709.[1354] Gribov, V.N., Lipatov, L.N., Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15 (1972), 438–450.[1355] Altarelli, Guido, Parisi, G., Asymptotic freedom in parton language. Nucl. Phys. B 126 (1977), 298–318, 10.1016/0550-3213(77)90384-4.[1356] Doksh*tzer, Yuri L., Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46 (1977), 641–653.[1357] Kuraev, E.A., Lipatov, L.N., Fadin, Victor S., The Pomeranchuk singularity in nonabelian gauge theories. Sov. Phys. JETP 45 (1977), 199–204.[1358] Balitsky, I.I., Lipatov, L.N., The Pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28 (1978), 822–829.[1359] Weigert, Heribert, Evolution at small x(bj): the color glass condensate. Prog. Part. Nucl. Phys. 55 (2005), 461–565, 10.1016/j.ppnp.2005.01.029 arXiv:hep-ph/0501087.[1360] Jalilian-Marian, Jamal, Kovchegov, Yuri V., Saturation physics and deuteron-gold collisions at RHIC. Prog. Part. Nucl. Phys. 56 (2006), 104–231, 10.1016/j.ppnp.2005.07.002 arXiv:hep-ph/0505052.[1361] Gelis, Francois, Iancu, Edmond, Jalilian-Marian, Jamal, Venugopalan, Raju, The color glass condensate. Annu. Rev. Nucl. Part. Sci. 60 (2010), 463–489, 10.1146/annurev.nucl.010909.083629 arXiv:1002.0333.[1362] Albacete, Javier L., Marquet, Cyrille, Gluon saturation and initial conditions for relativistic heavy ion collisions. Prog. Part. Nucl. Phys. 76 (2014), 1–42, 10.1016/j.ppnp.2014.01.004 arXiv:1401.4866.[1363] Balitsky, Ian, Factorization and high-energy effective action. Phys. Rev. D, 60, 1999, 014020, 10.1103/PhysRevD.60.014020 arXiv:hep-ph/9812311.[1364] Kovchegov, Yuri V., Small x F(2) structure function of a nucleus including multiple pomeron exchanges. Phys. Rev. D, 60, 1999, 034008, 10.1103/PhysRevD.60.034008 arXiv:hep-ph/9901281.[1365] Kovchegov, Yuri V., Unitarization of the BFKL pomeron on a nucleus. Phys. Rev. D, 61, 2000, 074018, 10.1103/PhysRevD.61.074018 arXiv:hep-ph/9905214.[1366] Jalilian-Marian, Jamal, Kovner, Alex, Leonidov, Andrei, Weigert, Heribert, The BFKL equation from the Wilson renormalization group. Nucl. Phys. B 504 (1997), 415–431, 10.1016/S0550-3213(97)00440-9 arXiv:hep-ph/9701284.[1367] Weigert, Heribert, Unitarity at small Bjorken x. Nucl. Phys. A 703 (2002), 823–860, 10.1016/S0375-9474(01)01668-2 arXiv:hep-ph/0004044.[1368] Iancu, Edmond, Leonidov, Andrei, McLerran, Larry D., The renormalization group equation for the color glass condensate. Phys. Lett. B 510 (2001), 133–144, 10.1016/S0370-2693(01)00524-X arXiv:hep-ph/0102009.[1369] Mueller, Alfred H., Small x behavior and parton saturation: a QCD model. Nucl. Phys. B 335 (1990), 115–137, 10.1016/0550-3213(90)90173-B.[1370] McLerran, Larry D., Venugopalan, Raju, Green's functions in the color field of a large nucleus. Phys. Rev. D 50 (1994), 2225–2233, 10.1103/PhysRevD.50.2225 arXiv:hep-ph/9402335.[1371] Hauenstein, F., et al. Measuring recoiling nucleons from the nucleus with the future electron ion collider. Phys. Rev. C, 105(3), 2022, 034001, 10.1103/PhysRevC.105.034001 arXiv:2109.09509.[1372] Tu, Zhoudunming, Jentsch, Alexander, Baker, Mark, Zheng, Liang, Lee, Jeong-Hun, Venugopalan, Raju, Hen, Or, Higinbotham, Douglas, Aschenauer, Elke-Caroline, Ullrich, Thomas, Probing short-range correlations in the deuteron via incoherent diffractive J/ψ production with spectator tagging at the EIC. Phys. Lett. B, 811, 2020, 135877, 10.1016/j.physletb.2020.135877 arXiv:2005.14706.[1373] Jentsch, Alexander, Tu, Zhoudunming, Weiss, Christian, Deep-inelastic electron-deuteron scattering with spectator nucleon tagging at the future electron ion collider: extracting free nucleon structure. Phys. Rev. C, 104(6), 2021, 065205, 10.1103/PhysRevC.104.065205 arXiv:2108.08314.[1374] Friscic, Ivica, et al. Neutron spin structure from e-3He scattering with double spectator tagging at the electron-ion collider. Phys. Lett. B, 823, 2021, 136726, 10.1016/j.physletb.2021.136726 arXiv:2106.08805.[1375] Ciofi degli Atti, C., Kaptari, L.P., Semi-inclusive deep inelastic scattering off few-nucleon systems: tagging the EMC effect and hadronization mechanisms with detection of slow recoiling nuclei. Phys. Rev. C, 83, 2011, 044602, 10.1103/PhysRevC.83.044602 arXiv:1011.5960.[1376] Ciofi degli Atti, Claudio, Kaptari, Leonid P., Mezzetti, Chiara Benedetta, Tagging emc effects and hadronization mechanisms by semi-inclusive deep inelastic scattering off nuclei. Fizika B 20 (2011), 161–172 arXiv:1103.3674.[1377] Strikman, M., Weiss, C., Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x. Phys. Rev. C, 97(3), 2018, 035209, 10.1103/PhysRevC.97.035209 arXiv:1706.02244.[1378] Cosyn, W., Weiss, C., Neutron spin structure from polarized deuteron DIS with proton tagging. Phys. Lett. B, 799, 2019, 135035, 10.1016/j.physletb.2019.135035 arXiv:1906.11119.[1379] Cosyn, W., Weiss, C., Polarized electron-deuteron deep-inelastic scattering with spectator nucleon tagging. Phys. Rev. C, 102, 2020, 065204, 10.1103/PhysRevC.102.065204 arXiv:2006.03033.[1380] Li, Hai Tao, Liu, Ze Long, Vitev, Ivan, Nuclear matter effects on jet production at electron-ion colliders. SciPost Phys. Proc., 8, 2022, 134, 10.21468/SciPostPhysProc.8.134 arXiv:2110.04858.[1381] Davoudiasl, Hooman, Marcarelli, Roman, Neil, Ethan T., Lepton-flavor-violating ALPs at the electron-ion collider: a golden opportunity. J. High Energy Phys., 02, 2023, 071, 10.1007/JHEP02(2023)071 arXiv:2112.04513.[1382] Vidovic, M., Greiner, M., Best, C., Soff, G., Impact parameter dependence of the electromagnetic particle production in ultrarelativistic heavy ion collisions. Phys. Rev. C 47 (1993), 2308–2319, 10.1103/PhysRevC.47.2308.[1383] Klein, Spencer R., Two-photon production of dilepton pairs in peripheral heavy ion collisions. Phys. Rev. C, 97(5), 2018, 054903, 10.1103/PhysRevC.97.054903 arXiv:1801.04320.[1384] Brandenburg, James Daniel, Seger, Janet, Xu, Zhangbu, Zha, Wangmei, Report on progress in physics: observation of the Breit-Wheeler process and vacuum birefringence in heavy-ion collisions. arXiv:2208.14943, 8 2022.[1385] Adams, J., et al. Production of e+ e- pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collision. Phys. Rev. C, 70, 2004, 031902, 10.1103/PhysRevC.70.031902 arXiv:nucl-ex/0404012.[1386] Afanasiev, S., et al. Photoproduction of J/psi and of high mass e+e- in ultra-peripheral Au+Au collisions at s**(1/2) = 200-GeV. Phys. Lett. B 679 (2009), 321–329, 10.1016/j.physletb.2009.07.061 arXiv:0903.2041.[1387] Adam, Jaroslav, et al. Measurement of e+e momentum and angular distributions from linearly polarized photon collisions. Phys. Rev. Lett., 127(5), 2021, 052302, 10.1103/PhysRevLett.127.052302 arXiv:1910.12400.[1388] Abbas, E., et al. Charmonium and e+e pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at s

NN

=2.76 TeV. Eur. Phys. J. C, 73(11), 2013, 2617, 10.1140/epjc/s10052-013-2617-1 arXiv:1305.1467.[1389] Aad, Georges, et al. Exclusive dimuon production in ultraperipheral Pb+Pb collisions at s

NN

=5.02 TeV with ATLAS. Phys. Rev. C, 104, 2021, 024906, 10.1103/PhysRevC.104.024906 arXiv:2011.12211.[1390] Exclusive dielectron production in ultraperipheral Pb+Pb collisions at s

NN

=5.02 TeV with ATLAS. arXiv:2207.12781, 7 2022.[1391] Observation of the γγ→ττ process in Pb+Pb collisions and constraints on the τ-lepton anomalous magnetic moment with the ATLAS detector. arXiv:2204.13478, 4 2022.[1392] Measurement of muon pairs produced via γγ scattering in non-ultraperipheral Pb+Pb collisions at s

NN

=5.02 TeV with the ATLAS detector. arXiv:2206.12594, 6 2022.[1393] Klein, Spencer R., Nystrand, Joakim, Seger, Janet, Gorbunov, Yuri, Butterworth, Joey, STARlight: a Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Comput. Phys. Commun. 212 (2017), 258–268, 10.1016/j.cpc.2016.10.016 arXiv:1607.03838.[1394] Surányi, O., et al. Performance of the CMS zero degree calorimeters in pPb collisions at the LHC. J. Instrum., 16(05), 2021, P05008, 10.1088/1748-0221/16/05/P05008 arXiv:2102.06640.[1395] Díaz, P. Santos, et al. Mechanical and thermal design of the target neutral beam absorber for the high-luminosity LHC upgrade. Phys. Rev. Accel. Beams, 25(5), 2022, 053001, 10.1103/PhysRevAccelBeams.25.053001.[1396] Li, Cong, Zhou, Jian, Zhou, Ya-Jin, Probing the linear polarization of photons in ultraperipheral heavy ion collisions. Phys. Lett. B 795 (2019), 576–580, 10.1016/j.physletb.2019.07.005 arXiv:1903.10084.[1397] Li, Cong, Zhou, Jian, Zhou, Ya-Jin, Impact parameter dependence of the azimuthal asymmetry in lepton pair production in heavy ion collisions. Phys. Rev. D, 101(3), 2020, 034015, 10.1103/PhysRevD.101.034015 arXiv:1911.00237.[1398] Brandenburg, James Daniel, Zha, Wangmei, Xu, Zhangbu, Mapping the electromagnetic fields of heavy-ion collisions with the Breit-Wheeler process. Eur. Phys. J. A, 57(10), 2021, 299, 10.1140/epja/s10050-021-00595-5 arXiv:2103.16623.[1399] Photo-nuclear jet production in ultra-peripheral Pb+Pb collisions at s

NN

=5.02 TeV with the ATLAS detector., 2022.[1400] Abbott, B.P., et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119(16), 2017, 161101, 10.1103/PhysRevLett.119.161101 arXiv:1710.05832.[1401] Riley, Thomas E., et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophys. J. Lett., 918(2), 2021, L27, 10.3847/2041-8213/ac0a81 arXiv:2105.06980.[1402] Miller, M.C., et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett., 918(2), 2021, L28, 10.3847/2041-8213/ac089b arXiv:2105.06979.[1403] Fonseca, E., et al. Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys. J. Lett., 915(1), 2021, L12, 10.3847/2041-8213/ac03b8 arXiv:2104.00880.[1404] Pineda, Skyy V., et al. Charge radius of neutron-deficient Ni54 and symmetry energy constraints using the difference in mirror pair charge radii. Phys. Rev. Lett., 127(18), 2021, 182503, 10.1103/PhysRevLett.127.182503 arXiv:2106.10378.[1405] Alford, Mark G., Bovard, Luke, Hanauske, Matthias, Rezzolla, Luciano, Schwenzer, Kai, Viscous dissipation and heat conduction in binary neutron-star mergers. Phys. Rev. Lett., 120(4), 2018, 041101, 10.1103/PhysRevLett.120.041101 arXiv:1707.09475.[1406] Perego, Albino, Bernuzzi, Sebastiano, Radice, David, Thermodynamics conditions of matter in neutron star mergers. Eur. Phys. J. A, 55(8), 2019, 124, 10.1140/epja/i2019-12810-7 arXiv:1903.07898.[1407] Arras, Phil, Weinberg, Nevin N., Urca reactions during neutron star inspiral. Mon. Not. R. Astron. Soc. 486:1 (2019), 1424–1436, 10.1093/mnras/stz880 arXiv:1806.04163.[1408] Most, Elias R., Harris, Steven P., Plumberg, Christopher, Alford, Mark G., Noronha, Jorge, Noronha-Hostler, Jacquelyn, Pretorius, Frans, Witek, Helvi, Yunes, Nicolás, Projecting the likely importance of weak-interaction-driven bulk viscosity in neutron star mergers. Mon. Not. R. Astron. Soc. 509:1 (2021), 1096–1108, 10.1093/mnras/stab2793 arXiv:2107.05094.[1409] Hammond, Peter, Hawke, Ian, Andersson, Nils, Detecting the impact of nuclear reactions on neutron star mergers through gravitational waves. arXiv:2205.11377, 5 2022.[1410] Most, Elias R., Haber, Alexander, Harris, Steven P., Zhang, Ziyuan, Alford, Mark G., Noronha, Jorge, Emergence of microphysical viscosity in binary neutron star post-merger dynamics. arXiv:2207.00442, 7 2022.[1411] Gavassino, L., Antonelli, M., Haskell, B., Bulk viscosity in relativistic fluids: from thermodynamics to hydrodynamics. Class. Quantum Gravity, 38(7), 2021, 075001, 10.1088/1361-6382/abe588 arXiv:2003.04609.[1412] Camelio, Giovanni, Gavassino, Lorenzo, Antonelli, Marco, Bernuzzi, Sebastiano, Haskell, Brynmor, Simulating bulk viscosity in neutron stars I: formalism. arXiv:2204.11809, 4 2022.[1413] Denicol, G.S., Niemi, H., Molnar, E., Rischke, D.H., Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D, 85, 2012, 114047, 10.1103/PhysRevD.85.114047 Phys. Rev. D, 91, 2015, 039902 (Erratum) arXiv:1202.4551.[1414] Adhikari, D., et al. Accurate determination of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Phys. Rev. Lett., 126(17), 2021, 172502, 10.1103/PhysRevLett.126.172502 arXiv:2102.10767.[1415] Adhikari, D., et al. Precision determination of the neutral weak form factor of Ca48. Phys. Rev. Lett., 129(4), 2022, 042501, 10.1103/PhysRevLett.129.042501 arXiv:2205.11593.[1416] Verpoest, Stef, et al. Testing hadronic interaction models with cosmic ray measurements at the IceCube neutrino observatory. PoS, ICRC2021, 2021, 357, 10.22323/1.395.0357 arXiv:2107.09387.[1417] Halim, Adila Abdul, et al. Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory. arXiv:2211.02857, 11 2022.[1418] Hanlon, William, Measurements of UHECR mass composition by telescope array. EPJ Web Conf., 210, 2019, 01008, 10.1051/epjconf/201921001008 arXiv:1812.05688.[1419] Albrecht, Johannes, et al. The muon puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider. Astrophys. Space Sci., 367(3), 2022, 27, 10.1007/s10509-022-04054-5 arXiv:2105.06148.[1420] Pajares, C., Sousa, D., Vazquez, R.A., Consequences of parton's saturation and string's percolation on the developments of cosmic ray showers. Phys. Rev. Lett. 86 (2001), 1674–1677, 10.1103/PhysRevLett.86.1674 arXiv:astro-ph/0005588.[1421] Alvarez-Muniz, J., Brogueira, P., Conceicao, R., Dias de Deus, J., Espirito Santo, M.C., Pimenta, M., Percolation and high energy cosmic rays above 10**17 eV. Astropart. Phys. 27 (2007), 271–277, 10.1016/j.astropartphys.2006.11.006 arXiv:hep-ph/0608050.[1422] Baur, Sebastian, Dembinski, Hans, Perlin, Matias, Pierog, Tanguy, Ulrich, Ralf, Werner, Klaus, Core-corona effect in hadron collisions and muon production in air showers. arXiv:1902.09265, 2 2019.[1423] Hentschinski, Martin, et al. White paper on forward physics, BFKL, saturation physics and diffraction. arXiv:2203.08129, 3 2022.[1424] Khachatryan, Vardan, et al. The very forward CASTOR calorimeter of the CMS experiment. J. Instrum., 16(02), 2021, P02010, 10.1088/1748-0221/16/02/P02010 arXiv:2011.01185.[1425] Feng, Jonathan L., et al. The forward physics facility at the high-luminosity LHC. J. Phys. G, 50(3), 2023, 030501, 10.1088/1361-6471/ac865e arXiv:2203.05090.[1426] Bhattacharya, Atri, Enberg, Rikard, Reno, Mary Hall, Sarcevic, Ina, Stasto, Anna, Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. PoS, ICHEP2020, 2021, 116, 10.22323/1.390.0116 arXiv:2012.15190.[1427] Aartsen, M.G., et al. Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption. Nature 551 (2017), 596–600, 10.1038/nature24459 arXiv:1711.08119.[1428] Aartsen, M.G., et al. Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube. Phys. Rev. D, 99(3), 2019, 032004, 10.1103/PhysRevD.99.032004 arXiv:1808.07629.[1429] Klein, Spencer R., Probing high-energy interactions of atmospheric and astrophysical neutrinos. https://doi.org/10.1142/9789813275027_0004 arXiv:1906.02221, 2020.[1430] Alvarez-Ruso, L., et al. NuSTEC white paper: status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys. 100 (2018), 1–68, 10.1016/j.ppnp.2018.01.006 arXiv:1706.03621.[1431] Abe, K., et al. Search for CP violation in neutrino and antineutrino oscillations by the T2K experiment with 2.2×1021 protons on target. Phys. Rev. Lett., 121(17), 2018, 171802, 10.1103/PhysRevLett.121.171802 arXiv:1807.07891.[1432] Abe, K., et al. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 580:7803 (2020), 339–344, 10.1038/s41586-020-2177-0 Nature, 583, 2020, E16 (Erratum) arXiv:1910.03887.[1433] Acero, M.A., et al. New constraints on oscillation parameters from ν

e

appearance and ν

μ

disappearance in the NOvA experiment. Phys. Rev. D, 98, 2018, 032012, 10.1103/PhysRevD.98.032012 arXiv:1806.00096.[1434] Ankowski, Artur M., Coloma, Pilar, Huber, Patrick, Mariani, Camillo, Vagnoni, Erica, Missing energy and the measurement of the CP-violating phase in neutrino oscillations. Phys. Rev. D, 92(9), 2015, 091301, 10.1103/PhysRevD.92.091301 arXiv:1507.08561.[1435] Khachatryan, M., et al. Electron-beam energy reconstruction for neutrino oscillation measurements. Nature 599:7886 (2021), 565–570, 10.1038/s41586-021-04046-5.[1436] Dai, H., et al. First measurement of the Ti(e,e)X cross section at Jefferson Lab. Phys. Rev. C, 98(1), 2018, 014617, 10.1103/PhysRevC.98.014617 arXiv:1803.01910.[1437] Dai, H., et al. First measurement of the Ar(e,e)X cross section at Jefferson Laboratory. Phys. Rev. C, 99(5), 2019, 054608, 10.1103/PhysRevC.99.054608 arXiv:1810.10575.[1438] Murphy, M., et al. Measurement of the cross sections for inclusive electron scattering in the E12-14-012 experiment at Jefferson Lab. Phys. Rev. C, 100(5), 2019, 054606, 10.1103/PhysRevC.100.054606 arXiv:1908.01802.[1439] Gu, L., et al. Measurement of the Ar(e,e′ p) and Ti(e,e′ p) cross sections in Jefferson Lab Hall A. Phys. Rev. C, 103(3), 2021, 034604, 10.1103/PhysRevC.103.034604 arXiv:2012.11466.[1440] Jiang, L., et al. Determination of the argon spectral function from (e,e'p) data. Phys. Rev. D, 105(11), 2022, 112002, 10.1103/PhysRevD.105.112002 arXiv:2203.01748.[1441] Jiang, L., et al. Determination of the titanium spectral function from (e,e'p) data. arXiv:2209.14108, 9 2022.[1442] Benhar, Omar, Coletti, Pietro, Meloni, Davide, Electroweak nuclear response in quasi-elastic regime. Phys. Rev. Lett., 105, 2010, 132301, 10.1103/PhysRevLett.105.132301 arXiv:1006.4783.[1443] Benhar, Omar, Huber, Patrick, Mariani, Camillo, Meloni, Davide, Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rep. 700 (2017), 1–47, 10.1016/j.physrep.2017.07.004 arXiv:1501.06448.[1444] Ankowski, Artur M., Mariani, Camillo, Systematic uncertainties in long-baseline neutrino-oscillation experiments. J. Phys. G, 44(5), 2017, 054001, 10.1088/1361-6471/aa61b2 arXiv:1609.00258.[1445] Rocco, Noemi, Barbieri, Carlo, Benhar, Omar, De Pace, Arturo, Lovato, Alessandro, Neutrino-nucleus cross section within the extended factorization scheme. Phys. Rev. C, 99(2), 2019, 025502, 10.1103/PhysRevC.99.025502 arXiv:1810.07647.[1446] Papadopoulou, A., et al. Inclusive electron scattering and the GENIE neutrino event generator. Phys. Rev. D, 103, 2021, 113003, 10.1103/PhysRevD.103.113003 arXiv:2009.07228.[1447] Bruce, Roderik, et al. New physics searches with heavy-ion collisions at the CERN Large Hadron Collider. J. Phys. G, 47(6), 2020, 060501, 10.1088/1361-6471/ab7ff7 arXiv:1812.07688.[1448] d'Enterria, David, et al. Opportunities for new physics searches with heavy ions at colliders. 2022 Snowmass Summer Study, 3 2022 arXiv:2203.05939.[1449] d'Enterria, David, da Silveira, Gustavo G., Observing light-by-light scattering at the Large Hadron Collider. Phys. Rev. Lett., 111, 2013, 080405, 10.1103/PhysRevLett.111.080405 Phys. Rev. Lett., 116, 2016, 129901 (Erratum) arXiv:1305.7142.[1450] Aaboud, Morad, et al. Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nat. Phys. 13:9 (2017), 852–858, 10.1038/nphys4208 arXiv:1702.01625.[1451] Sirunyan, Albert M., et al. Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at s

NN

= 5.02 TeV. Phys. Lett. B, 797, 2019, 134826, 10.1016/j.physletb.2019.134826 arXiv:1810.04602.[1452] Aad, Georges, et al. Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector. Phys. Rev. Lett., 123(5), 2019, 052001, 10.1103/PhysRevLett.123.052001 arXiv:1904.03536.[1453] del Aguila, F., Cornet, F., Illana, Jose I., The possibility of using a large heavy-ion collider for measuring the electromagnetic properties of the tau lepton. Phys. Lett. B 271 (1991), 256–260, 10.1016/0370-2693(91)91309-J.[1454] Abi, B., et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett., 126(14), 2021, 141801, 10.1103/PhysRevLett.126.141801 arXiv:2104.03281.[1455] Observation of τ lepton pair production in ultraperipheral lead-lead collisions at s

NN

= 5.02 TeV. arXiv:2206.05192, 6 2022.[1456] Burmasov, Nazar, Kryshen, Evgeny, Buehler, Paul, Lavicka, Roman, Feasibility of tau g-2 measurements in ultra-peripheral collisions of heavy ions. 16th International Workshop on Tau Lepton Physics, 3 2022 arXiv:2203.00990.[1457] Abdallah, J., et al. Study of tau-pair production in photon-photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton. Eur. Phys. J. C 35 (2004), 159–170, 10.1140/epjc/s2004-01852-y arXiv:hep-ex/0406010.[1458] Androic, D., et al. First determination of the weak charge of the proton. Phys. Rev. Lett., 111(14), 2013, 141803, 10.1103/PhysRevLett.111.141803 arXiv:1307.5275.[1459] Androić, D., et al. Precision measurement of the weak charge of the proton. Nature 557:7704 (2018), 207–211, 10.1038/s41586-018-0096-0 arXiv:1905.08283.[1460] Wood, C.S., Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, Carl E., Measurement of parity nonconservation and an anapole moment in cesium. Science 275 (1997), 1759–1763, 10.1126/science.275.5307.1759.[1461] Guena, Jocelyne, Lintz, Michel, Bouchiat, Marie-Anne, Atomic parity violation: principles, recent results, present motivations. Mod. Phys. Lett. A 20 (2005), 375–390, 10.1142/S0217732305016853 arXiv:physics/0503143.[1462] Toh, George, Damitz, Amy, Tanner, Carol E., Johnson, W.R., Elliott, D.S., Determination of the scalar and vector polarizabilities of the cesium 6sS1/22→7sS1/22 transition and implications for atomic parity non-conservation. Phys. Rev. Lett., 123(7), 2019, 073002, 10.1103/PhysRevLett.123.073002 arXiv:1905.02768.[1463] Becker, Dominik, et al. The P2 experiment. Eur. Phys. J. A, 54(11), 2018, 208, 10.1140/epja/i2018-12611-6 arXiv:1802.04759.[1464] Wang, D., et al. Measurement of parity violation in electron–quark scattering. Nature 506:7486 (2014), 67–70, 10.1038/nature12964.[1465] Wang, D., et al. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering. Phys. Rev. C, 91(4), 2015, 045506, 10.1103/PhysRevC.91.045506 arXiv:1411.3200.[1466] Diefenthaler, Markus, Farhat, Abdullah, Verbytskyi, Andrii, Xu, Yuesheng, Deeply learning deep inelastic scattering kinematics. Eur. Phys. J. C, 82(11), 2022, 1064, 10.1140/epjc/s10052-022-10964-z arXiv:2108.11638.[1467] ATLAS Collaboration. Atlas software and computing hl-lhc roadmap. Technical report, 2022, CERN, Geneva http://cds.cern.ch/record/2802918.[1468] Boccali, T., Computing models in high energy physics. Rev. Phys., 4, 2019, 100034, 10.1016/j.revip.2019.100034.[1469] Future trends in nuclear physics computing. https://www.jlab.org/FTNPC.[1470] Boehnlein, Amber, et al. Colloquium: machine learning in nuclear physics. Rev. Mod. Phys., 94(3), 2022, 031003, 10.1103/RevModPhys.94.031003 arXiv:2112.02309.[1471] A.I. for the electron ion collider. https://eic.ai.[1472] NSF cyberinfrastruction for sustained scientific innovation. https://beta.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific.[1473] NSF national artificial intelligence research institutes. https://beta.nsf.gov/funding/opportunities/national-artificial-intelligence-research.[1474] Thomadakis, Polykarpos, Angelopoulos, Angelos, Gavalian, Gagik, Chrisochoides, Nikos, Using machine learning for particle track identification in the CLAS12 detector. arXiv:2008.12860, 8 2020.[1475] Barsotti, Rebecca, Shepherd, Matthew R., Using machine learning to separate hadronic and electromagnetic interactions in the gluex forward calorimeter. J. Instrum., 15(05), 2020, P05021.[1476] Bielčíková, J., et al. J. Instrum., 16(03017), 2021.[1477] Lee, Kyle, Mulligan, James, Płoskoń, Mateusz, Ringer, Felix, Yuan, Feng, Machine learning-based jet and event classification at the electron-ion collider with applications to hadron structure and spin physics. arXiv:2210.06450, 10 2022.[1478] Fanelli, Cristiano, Giroux, J., Papandreou, Z., ‘Flux+ mutability’: a conditional generative approach to one-class classification and anomaly detection. Mach. Learn.: Sci. Technol., 3(4), 2022, 045012.[1479] Andreassen, Anders, Komiske, Patrick T., Metodiev, Eric M., Nachman, Benjamin, Thaler, Jesse, OmniFold: a method to simultaneously unfold all observables. Phys. Rev. Lett., 124(18), 2020, 182001, 10.1103/PhysRevLett.124.182001 arXiv:1911.09107.[1480] Andreev, V., et al. Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning for unfolding. Phys. Rev. Lett., 128(13), 2022, 132002, 10.1103/PhysRevLett.128.132002 arXiv:2108.12376.[1481] Fanelli, Cristiano, Pomponi, Jary, DeepRICH: learning deeply Cherenkov detectors. Mach. Learn.: Sci. Technol., 1(1), 2020, 015010.[1482] Aad, G., et al. AtlFast3: the next generation of fast simulation in ATLAS. Comput. Softw. Big Sci. 6:1 (2022), 1–54.[1483] Nachman, Benjamin, A guide for deploying deep learning in LHC searches: how to achieve optimality and account for uncertainty. SciPost Phys., 8(6), 2020, 090.[1484] Schram, Malachi, Rajput, Kishansingh, Somayaji NS, Karthik, Li, Peng, John, Jason St., Sharma, Himanshu, Uncertainty aware ML-based surrogate models for particle accelerators: a study at the Fermilab booster accelerator complex. arXiv:2209.07458, 9 2022.[1485] Kitouni, Ouail, Nolte, Niklas, Williams, Mike, Robust and provably monotonic networks. arXiv:2112.00038, 11 2021.[1486] Cisbani, Evaristo, et al. AI-optimized detector design for the future electron-ion collider: the dual-radiator RICH case. J. Instrum., 15(05), 2020, P05009.[1487] Fanelli, Cristiano, Design of detectors at the electron ion collider with artificial intelligence. J. Instrum., 17(04), 2022, C04038.[1488] Liu, Ming Xiong, Intelligent Experiment Through Real-Time AI: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors. Technical Report LA-UR-22-28083, 2022, Los Alamos National Lab, Los Alamos, NM.[1489] Ameli, F., Battaglieri, M., Berdnikov, V.V., et al. Streaming readout for next generation electron scattering experiments. Eur. Phys. J. Plus, 137, 2022, 958, 10.1140/epjp/s13360-022-03146-z.[1490] Jeske, T., et al. AI for experimental controls at Jefferson Lab. J. Instrum., 17, 2022, C03043.[1491] Meier, David, Ramirez, Luis Vera, Völker, Jens, Viefhaus, Jens, Sick, Bernhard, Hartmann, Gregor, Optimizing a superconducting radio-frequency gun using deep reinforcement learning. Phys. Rev. Accel. Beams, 25, Oct 2022, 104604, 10.1103/PhysRevAccelBeams.25.104604 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.104604.[1492] Obermair, Christoph, Cartier-Michaud, Thomas, Apollonio, Andrea, Millar, William, Felsberger, Lukas, Fischl, Lorenz, Bovbjerg, Holger Severin, Wollmann, Daniel, Wuensch, Walter, Catalan-Lasheras, Nuria, Boronat, Mar çà, Pernkopf, Franz, Burt, Graeme, Explainable machine learning for breakdown prediction in high gradient rf cavities. Phys. Rev. Accel. Beams, 25, Oct 2022, 104601, 10.1103/PhysRevAccelBeams.25.104601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.104601.[1493] Lumpkin, A.H., Thurman-Keup, R., Edstrom, D., Prieto, P., Ruan, J., Jacobson, B., Sikora, J., Diaz-Cruz, J., Edelen, A., Zhou, F., Submacropulse electron-beam dynamics correlated with higher-order modes in a tesla-type cryomodule. Phys. Rev. Accel. Beams, 25, Jun 2022, 064402, 10.1103/PhysRevAccelBeams.25.064402 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.064402.[1494] Gao, Y., Lin, W., Brown, K.A., Gu, X., Hoffstaetter, G.H., Morris, J., Seletskiy, S., Bayesian optimization experiment for trajectory alignment at the low energy rhic electron cooling system. Phys. Rev. Accel. Beams, 25, Jan 2022, 014601, 10.1103/PhysRevAccelBeams.25.014601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.014601.[1495] Mishra, Aashwin Ananda, Edelen, Auralee, Hanuka, Adi, Mayes, Christopher, Uncertainty quantification for deep learning in particle accelerator applications. Phys. Rev. Accel. Beams, 24, Nov 2021, 114601, 10.1103/PhysRevAccelBeams.24.114601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.114601.[1496] John, Jason St., Herwig, Christian, Kafkes, Diana, Mitrevski, Jovan, Pellico, William A., Perdue, Gabriel N., Quintero-Parra, Andres, Schupbach, Brian A., Seiya, Kiyomi, Tran, Nhan, Schram, Malachi, Duarte, Javier M., Huang, Yunzhi, Keller, Rachael, Real-time artificial intelligence for accelerator control: a study at the fermilab booster. Phys. Rev. Accel. Beams, 24, Oct 2021, 104601, 10.1103/PhysRevAccelBeams.24.104601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.104601.[1497] Emery, Louis, Shang, Hairong, Sun, Yipeng, Huang, Xiaobiao, Application of a machine learning based algorithm to online optimization of the nonlinear beam dynamics of the argonne advanced photon source. Phys. Rev. Accel. Beams, 24, Aug 2021, 082802, 10.1103/PhysRevAccelBeams.24.082802 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.082802.[1498] Hanuka, Adi, Huang, X., Shtalenkova, J., Kennedy, D., Edelen, A., Zhang, Z., Lalchand, V.R., Ratner, D., Duris, J., Physics model-informed Gaussian process for online optimization of particle accelerators. Phys. Rev. Accel. Beams, 24, Jul 2021, 072802, 10.1103/PhysRevAccelBeams.24.072802 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.072802.[1499] Tennant, Chris, Carpenter, Adam, Powers, Tom, Solopova, Anna Shabalina, Vidyaratne, Lasitha, Iftekharuddin, Khan, Superconducting radio-frequency cavity fault classification using machine learning at Jefferson laboratory. Phys. Rev. Accel. Beams, 23, Nov 2020, 114601, 10.1103/PhysRevAccelBeams.23.114601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.114601.[1500] Edelen, Auralee, Neveu, Nicole, Frey, Matthias, Huber, Yannick, Mayes, Christopher, Adelmann, Andreas, Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Phys. Rev. Accel. Beams, 23, Apr 2020, 044601, 10.1103/PhysRevAccelBeams.23.044601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.044601.[1501] Xu, Xingyi, Zhou, Yimei, Leng, Yongbin, Machine learning based image processing technology application in bunch longitudinal phase information extraction. Phys. Rev. Accel. Beams, 23, Mar 2020, 032805, 10.1103/PhysRevAccelBeams.23.032805 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.032805.[1502] Azzopardi, Gabriella, Salvachua, Belen, Valentino, Gianluca, Redaelli, Stefano, Muscat, Adrian, Operational results on the fully automatic lhc collimator alignment. Phys. Rev. Accel. Beams, 22, Sep 2019, 093001, 10.1103/PhysRevAccelBeams.22.093001 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.093001.[1503] Vilsmeier, D., Sapinski, M., Singh, R., Space-charge distortion of transverse profiles measured by electron-based ionization profile monitors and correction methods. Phys. Rev. Accel. Beams, 22, May 2019, 052801, 10.1103/PhysRevAccelBeams.22.052801 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.052801.[1504] Emma, C., Edelen, A., Hogan, M.J., O'Shea, B., White, G., Yakimenko, V., Machine learning-based longitudinal phase space prediction of particle accelerators. Phys. Rev. Accel. Beams, 21, Nov 2018, 112802, 10.1103/PhysRevAccelBeams.21.112802 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.112802.[1505] Li, Yongjun, Cheng, Weixing, Yu, Li Hua, Rainer, Robert, Genetic algorithm enhanced by machine learning in dynamic aperture optimization. Phys. Rev. Accel. Beams, 21, May 2018, 054601, 10.1103/PhysRevAccelBeams.21.054601 https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.054601.[1506] SBIR FY 2022 phase I release 2, version 5. https://science.osti.gov/-/media/sbir/pdf/TechnicalTopics/FY22-Phase-I-Release-2-Combined-TopicsV512012021.pdf, 2021. (Accessed 10 December 2022)[1507] Agostinelli, S., et al. GEANT4–a simulation toolkit. Nucl. Instrum. Methods A 506 (2003), 250–303, 10.1016/S0168-9002(03)01368-8.[1508] Ahdida, C., et al. New capabilities of the FLUKA multi-purpose code. Front. Phys., 9, 2022, 788253, 10.3389/fphy.2021.788253.[1509] Tepel, J.W., Ensdf - the evaluated nuclear structure data file. Comput. Phys. Commun. 33:1 (1984), 129–146, 10.1016/0010-4655(84)90115-2 https://www.sciencedirect.com/science/article/pii/0010465584901152.[1510] National nuclear data center. https://www.nndc.bnl.gov/.[1511] Plompen, A.J.M., et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A, 56(7), 2020, 181, 10.1140/epja/s10050-020-00141-9.[1512] Chadwick, M.B., et al. ENDF/b-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112:12 (2011), 2887–2996, 10.1016/j.nds.2011.11.002.[1513] Koning, A.J., Rochman, D., Sublet, J.Ch., Dzysiuk, N., Fleming, M., van der Marck, S., TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets 155 (2019), 1–55, 10.1016/j.nds.2019.01.002.[1514] Arndt, R.A., Briscoe, W.J., Strakovsky, I.I., Workman, R.L., Updated analysis of NN elastic scattering to 3-GeV. Phys. Rev. C, 76, 2007, 025209, 10.1103/PhysRevC.76.025209 arXiv:0706.2195.[1515] Acharya, Shreyasi, et al. First measurement of the absorption of He‾3 nuclei in matter and impact on their propagation in the galaxy. arXiv:2202.01549, 2 2022.[1516] Nepali, C., Fai, G., Keane, D., Advantage of U+U over Au+Au collisions at constant beam energy. Phys. Rev. C, 73, 2006, 034911, 10.1103/PhysRevC.73.034911.[1517] Badhwar, G.D., O'Neill, P.M., An improved model of galactic cosmic radiation for space exploration missions. Int. J. Radiat. Appl. Instrum., Part D, Nucl. Tracks Radiat. Meas. 20 (1992), 403–410.[1518] Grupen, C., et al. Measurements of the muon component of extensive air showers at 320 m.w.e. underground. Nucl. Instrum. Methods A 510 (2003), 190–193, 10.1016/S0168-9002(03)01697-8.[1519] Ridky, J., Travnicek, P., Detection of muon bundles from cosmic ray showers by the DELPHI experiment. Nucl. Phys. B, Proc. Suppl. 138 (2005), 295–298, 10.1016/j.nuclphysbps.2004.11.066.[1520] Achard, P., et al. Measurement of the atmospheric muon spectrum from 20-GeV to 3000-GeV. Phys. Lett. B 598 (2004), 15–32, 10.1016/j.physletb.2004.08.003 arXiv:hep-ex/0408114.[1521] Adam, Jaroslav, et al. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider. J. Cosmol. Astropart. Phys., 01, 2016, 032, 10.1088/1475-7516/2016/01/032 arXiv:1507.07577.[1522] Fernandez Tellez, Arturo, ACORDE, the ALICE cosmic ray detector. 30th International Cosmic Ray Conference, Volume 5, 7 2007, 1201–1204.[1523] Finckenor, Miria M., Materials for Spacecraft. chapter 6, 2018, American Inst. Aeronautics Astronautics, 403–434, 10.2514/5.9781624104893.0403.0434 https://arc.aiaa.org/doi/abs/10.2514/5.9781624104893.0403.0434 arXiv:https://arc.aiaa.org/doi/pdf/10.2514/5.9781624104893.0403.0434.[1524] Höeffgen, Stefan K., Metzger, Stefan, Steffens, Michael, Investigating the effects of cosmic rays on space electronics. Front. Phys., 8, 2020, 10.3389/fphy.2020.00318 https://www.frontiersin.org/articles/10.3389/fphy.2020.00318.[1525] Durante, Marco, Cucinotta, Francis A., Physical basis of radiation protection in space travel. Rev. Mod. Phys. 83 (Nov 2011), 1245–1281, 10.1103/RevModPhys.83.1245 https://link.aps.org/doi/10.1103/RevModPhys.83.1245.[1526] Workshop for applied nuclear data activities (wanda 2022). https://conferences.lbl.gov/event/880/contributions/5586/attachments/3823/3098/ND_at_RHIC_WANDA2022_Cebra.pdf, 2022.[1527] Norbury, John W., Double-differential FRaGmentation (DDFRG) models for proton and light ion production in high energy nuclear collisions. Nucl. Instrum. Methods A, 986, 2021, 164681, 10.1016/j.nima.2020.164681.[1528] Hufner, J., Schafer, K., Schurmann, B., Abrasion-ablation in reactions between relativistic heavy ions. Phys. Rev. C 12 (1975), 1888–1898, 10.1103/PhysRevC.12.1888.[1529] Werneth, C.M., de Wet, W.C., Townsend, L.W., Maung, K.M., Norbury, J.W., Slaba, T.C., Norman, R.B., Blattnig, S.R., Ford, W.P., Relativistic abrasion–ablation de-excitation fragmentation (raadfrg) model. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 502 (2021), 118–135, 10.1016/j.nimb.2021.06.016 https://www.sciencedirect.com/science/article/pii/S0168583X21002275.[1530] Luoni, F., et al. Total nuclear reaction cross-section database for radiation protection in space and heavy-ion therapy applications. New J. Phys., 23(10), 2021, 101201, 10.1088/1367-2630/ac27e1 arXiv:2105.11981.[1531] Sombun, Sukanya, Tomuang, Kristiya, Limphirat, Ayut, Hillmann, Paula, Herold, Christoph, Steinheimer, Jan, Yan, Yupeng, Bleicher, Marcus, Deuteron production from phase-space coalescence in the UrQMD approach. Phys. Rev. C, 99(1), 2019, 014901, 10.1103/PhysRevC.99.014901 arXiv:1805.11509.[1532] Abbott, T., et al. Measurement of particle production in proton induced reactions at 14.6-GeV/c. Phys. Rev. D 45 (1992), 3906–3920, 10.1103/PhysRevD.45.3906.[1533] Kolos, Karolina, et al. Current nuclear data needs for applications. Phys. Rev. Res., 4(2), 2022, 021001, 10.1103/PhysRevResearch.4.021001.[1534] Smith, M.S., Vogt, R., LaBel, K., Nuclear data for high energy ion interactions and secondary particle production. https://doi.org/10.2172/1883853, 2022.

The present and future of QCD (2024)

FAQs

What are the problems with QCD? ›

The problem lies in the sector dealing with the interactions of quarks and gluons, the sector known as Quantum Chromodynamics or QCD. We simply do not know for sure why quarks and gluons, which are the fundamental fields of the theory, don't show up in the actual spectrum of the theory, as asymptotic particle states.

Is quantum chromodynamics proven? ›

Quantum chromodynamics (QCD), the nonAbelian gauge theory of interacting quarks and gluons, is by now the widely accepted microscopic theory of strong interactions. Embedded into the standard model of particle physics it has passed various experimental tests.

Why is QCD so hard? ›

In most circ*mstances, making testable predictions with QCD is extremely difficult, due to the infinite number of possible topologically-inequivalent interactions. Over short distances, the coupling is small enough that this infinite number of terms can be approximated accurately by a finite number of terms.

What is the difference between QCD and QED? ›

QED describes a force that can extend across infinite reaches of space, although the force becomes weaker as the distance between two charges increases (obeying an inverse square law). In QCD, however, the interactions between gluons emitted by colour charges prevent those charges from being pulled apart.

Why is a QCD better than a charitable deduction? ›

QCDs are also not counted toward the maximum amounts deductible for those who itemize their giving on their taxes—the $105,000 can be above and beyond those limits. For these reasons, a QCD can potentially enable a donor to give a bigger charitable gift than they could if they just donated cash or other assets.

What is the critical point of QCD? ›

QCD critical point is a landmark region in the QCD phase diagram outlined by temperature as a function of baryon chemical potential.

How accurate is QCD? ›

QCD is not very precise compared to QED and for good reason. The reason has to do with the nature of gauge couplings of two theories. In QED the gauge coupling (electric charge) is weak at low energy that's why the coupling of a photon to an electron is not very strong.

Did Einstein try to disprove quantum mechanics? ›

Einstein and Niels Bohr began disputing Quantum Theory at the prestigious 1927 Solvay Conference, attended by top physicists of the day. By most accounts of this public debate, Bohr was the victor.

Who is the father of QCD? ›

In 1973 the concept of color as the source of a "strong field" was developed into the theory of QCD by physicists Harald Fritzsch and Heinrich Leutwyler, together with physicist Murray Gell-Mann.

What is the nutshell of QCD? ›

In the nutshell, theoretical Physics talks a lot about QCD or quantum chromodynamics. QCD is the interaction between quarks and gluon. Quarks and gluons make up the composite particles, like protons, neutrons, and pions. Therefore, the interaction between these particles is allocated a quantum number, known as colour.

What is the difference between string theory and quantum chromodynamics? ›

String theory and QCD might actually describe the same physics. Strings with free ends that give rise to QCD can be restricted to a “brane”, while closed loops of string that generate gravity live in a higher-dimension space. The two different theories only interact at the position of the brane.

Is QCD harder than QED? ›

The rules for calculating in QCD are slightly more complicated that in QED, as we will briefly review, however, the basic techniques for the calculation are very similar. We have a lot to cover so will necessarily have to take some short cuts.

Is QED accurate? ›

In technical terms, QED can be described as a very accurate way to calculate the probability of the position and movement of particles, even those massless such as photons, and the quantity depending on position (field) of those particles, and described light and matter beyond the wave-particle duality proposed by ...

Is QED mathematically consistent? ›

Rather, it is believed that QED by itself is not consistent; rather, there is a consistent (non-abelian gauge) unified theory weak and electromagnetic interactions, but the differences of the perturbation series of this consistent theory and QED are very small at low energies, explaining the agreement with experiment.

Is QED a quantum field theory? ›

quantum electrodynamics (QED), quantum field theory of the interactions of charged particles with the electromagnetic field. It describes mathematically not only all interactions of light with matter but also those of charged particles with one another.

How does the IRS know you made a QCD? ›

Like other IRA distributions, QCDs are reported on Line 4 of Form 1040 or Form 1040-SR. If part or all of an IRA distribution is a QCD, enter the total amount of the IRA distribution on Line 4a. This is the amount shown in Box 1 on Form 1099-R. Then, if the full amount of the distribution is a QCD, enter 0 on Line 4b.

What is the confinement problem in QCD? ›

In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions below the Hagedorn temperature of approximately 2 terakelvin (corresponding ...

Does a QCD count toward your RMD? ›

QCDs can be counted toward satisfying your required minimum distributions (RMDs) for the year, as long as certain rules are met. In addition to the benefits of giving to charity, a QCD excludes the amount donated from taxable income, which is unlike regular withdrawals from an IRA.

Top Articles
Latest Posts
Article information

Author: Saturnina Altenwerth DVM

Last Updated:

Views: 6029

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Saturnina Altenwerth DVM

Birthday: 1992-08-21

Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

Phone: +331850833384

Job: District Real-Estate Architect

Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.